


Vol 42, No 7 (2023)
XXXIV СИМПОЗИУМ “СОВРЕМЕННАЯ ХИМИЧЕСКАЯ ФИЗИКА” (СЕНТЯБРЬ 2022 г., ТУАПСЕ)
Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field
Abstract
This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.



The Relationship between the Structure of Nitroxyl Radicals and Their Localization In Solutions of Thermoresposive Polymers
Abstract
Electron paramagnetic resonance spectroscopy in the framework of the spin probe technique is applied to estimate the effect of the structure of molecules as an example of nitroxyl radicals on their localization in aqueous solutions of thermoresponsive poly-N-isopropylacrylamide during the coil-to-globule phase transition. It is shown that the small hydrophobic 4-hydroxybenzoate-TEMPO probe is almost completely localized in the globule formed during the phase transition, while the large probe containing a long alkyl tail (methyl 5-doxyl stearate) does not enter the compact polymer globule.



Synchronized Detection of X-Ray and Secondary Fluorescent Radiation of a Sample by Monophoton Sensors
Abstract
The structure of a device designed to detect X-ray and optical photons ascending from a sample irradiated with synchrotron radiation or X-ray tube radiation and the principles of its operation are described. The operation of the device consists of determining the delay time of the specified optical photons relative to the X-ray photons. Block diagrams of the main components of the device, outlining the principles of their operation, are given: a monophoton X-ray sensor, a monophoton optical sensor, and a unit for determining the time delay. The areas of scientific and applied use of information obtained with the help of the considered device are indicated.



Lithium-Conducting Nafion Membrane Plasticized with a DMSO–Sulfolane Mixture
Abstract
The effect of the composition of a binary plasticizing mixture based on dimethyl sulfoxide and sulfolane on the physicochemical properties of the lithium form of the Nafion membrane is studied. To explain the behavior of the electrotransport properties of membranes, experimental studies of intermolecular interactions, thermal behavior, and the ion-transport properties of the obtained lithium-conducting polyelectrolytes are carried out using IR spectroscopy, simultaneous thermal analysis, and impedance spectroscopy. A relationship is found between the shift of the eutectic point to the region of a lower content of sulfolane compared to bulk solvents and the composition of the plasticizer, in which the samples had the best conductivity of 0.76 mS/cm at 30°C.



L-Lactide Polymerization Kinetics in the Presence of Ti(Tbse)2 by Differential Scanning Calorimetry
Abstract
Polylactide is a biodegradable polymer that is increasingly used in the production of medical devices and environmentally friendly packaging. The search for new catalysts for the synthesis of polylactide that do not contain toxic tin and provide a polymer with a controlled set of properties is an urgent problem. In this study, a catalytic complex based on titanium (IV) is synthesized and characterized. The kinetics of the polymerization of L-lactide in the presence of this catalyst is studied by differential scanning calorimetry (DSC), the reaction enthalpy (–125.1 ± 1.5 J/g) is determined, and the kinetic parameters of the Arrhenius equation are calculated (Ea = 95.7 ± 7.5 kJ/mol, lnAeff = 22.7 ± 1.9).



Composite Aerogels Based on Reduced Graphene Oxide Decorated with Iron Oxide Nanoparticles: Synthesis, Physicochemical and Sorption Properties
Abstract
In this study, aerogels based on graphene oxide decorated with iron oxide nanoparticles are obtained by drying in supercritical isopropanol. For the synthesized samples with the calculated initial iron contents of 9, 18 and 36 wt %, the morphology and structure of the graphene matrix and iron-containing nanoparticles are studied using the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) methods. Comparative investigations are conducted to analyze the carbon and hydrogen composition within the synthesized aerogels structure, followed by an assessment of their magnetic properties at ambient temperature. Sorption experiments are carried out for the extraction of heavy and rare earth elements from multicomponent aqueous solutions of a complex composition.



Synthesis and Properties of poly(p-xylylene)–Molybdenum Oxide Nanocomposites
Abstract
Poly(p-xylylene)–molybdenum oxide nanocomposite thin films of different thicknesses and inorganic filler content are synthesized by low-temperature vapor deposition polymerization. The structure of the nanocomposites and its evolution during thermal annealing is studied by wide angle X-ray scattering and X-ray absorption spectroscopy. It is found that the molybdenum oxide nanoparticles are amorphous in both the as-deposited and annealed composite films. The short-range order characteristic of orthorhombic molybdenum trioxide is preserved in the nanoparticles; however, a noticeable disordering of the structure together with a decrease in the effective oxidation state of molybdenum are revealed. Both an increase in the filler content and thermal annealing lead to a decrease in the bandgap of the composites, which is related to the increase in the nanoparticle size. It is shown that thermal annealing improves the stability of the resistive switching (RS) characteristics in memristors based on the synthesized nanocomposites, which creates an opportunity for the application of these materials as the active layer of memristive devices.



Mechanism of One-Pot Stereoselective Assembly of Spiroketal Derivatives from Cyclohexanone and Phenylacetylene in KOH/DMSO: a Quantum Chemical Study
Abstract
The formation mechanisms of 15-[(Z)-phenylmethylidene]-7,14-dioxadispiro[5.1.5.2]pentadecane and the competitive formation of unsaturated ketones from cyclohexanone and phenylacetylene are studied using the B2PLYP-D2/6-311+G**//B3LYP/6-31+G* quantum chemical approach, taking into account solvation effects within the IEFPCM model. All stages of the assembly of dispiroketal and the stability of various conformers and isomers of the intermediates and the product are considered using the anionic model (ANIONGAS). Within the more detailed MONOPCM model, the activation barriers of the assembly of dispiroketal and the competing reaction of C-vinylation are evaluated. The obtained results of the quantum chemical calculations are in close agreement with the experimental data.



Simulation of Hydrogen and Oxygen Adsorption on Palladium Nanoparticles Located on a Graphite Substrate with Various Defects
Abstract
Density functional theory (DFT) modeling of the adsorption of atomic oxygen and hydrogen on the surface of palladium nanoparticles on graphite substrates with various defects is used to calculate the binding energies of adatoms and changes in the density of states of metal atoms upon interaction with adatoms. It is established that the adsorption of oxygen and hydrogen does not have more energetically favorable or stable adsorption sites on the surface of the nanoparticle, such as the interface with the substrate or the top, which is consistent with the results of the scanning tunneling microscopy and spectroscopy (STM/STS) experiments.



Influence of Impurities on the Stability of the Ti5Si3 and TiSi Phases
Abstract
The total energies of a number of Ti–Si intermetallic phases are calculated by the projector augmented-wave method. It is shown that the formation enthalpies of Ti5Si3 and TiSi are almost equal. The peculiarities of the density of electronic states of the considered titanium silicides and its evolution with increasing silicon content are discussed. The formation energies of doped titanium silicides Ti5Si3 and TiSi are calculated depending on the position of the impurity on different sublattices. It is established that the elements of the 3d-period prefer to replace titanium in Ti5Si3, while the elements of the second half of the 3d‑period substitute silicon in TiSi. The effect of impurities on the relative stability of compounds is studied. It is shown that almost all the considered elements except Cu, Zn, Al, and Ga increase the stability of the Ti5Si3 phase with respect to TiSi. The obtained results agree with the available experimental data.



Specific Features of the Decay Kinetics of an Excited Singlet State Into a Pair of Triplet Excitons In Rubrene Crystals
Abstract
In this study, the specific features of the kinetics of singlet fission (SF)—i.e., spontaneous splitting of the excited singlet state into a pair of triplet (T) excitons (TT-pair)—in anisotropic molecular crystals are analyzed in detail. These features are known to be primarily determined by the TT-annihilation of the created TT-pairs (migrating in the crystals). In our analysis, the kinetics of annihilation-affected SF processes is described in the two-state model (TSM), in which the interaction of migrating T-excitons is associated with transitions between two kinetic states of TT-pairs: [TT]-state of coupled TT-pairs and [T+T]-state of freely migrating T-excitons. The TSM makes it possible to represent the effects of migration and interaction on SF-kinetics in terms of the lattice Green’s functions, for which the analytical formulas are obtained in this study. The TSM is applied to the analysis of SF-kinetics in the rubrene single crystals recently measured in a wide time range. The analysis provides detailed information on some characteristic kinetic properties of SF processes in anisotropic crystals. It is shown, for example, that the formation of the [TT]-state in the SF process results in some distortion of the shape of the SF kinetic dependence at short times (of the order of the primary-stage time of SF kinetics). Is also demonstrated that the anisotropy of T-exciton migration manifests itself in some characteristic features of SF kinetics at long times.


