Lithium-Conducting Nafion Membrane Plasticized with a DMSO–Sulfolane Mixture

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of the composition of a binary plasticizing mixture based on dimethyl sulfoxide and sulfolane on the physicochemical properties of the lithium form of the Nafion membrane is studied. To explain the behavior of the electrotransport properties of membranes, experimental studies of intermolecular interactions, thermal behavior, and the ion-transport properties of the obtained lithium-conducting polyelectrolytes are carried out using IR spectroscopy, simultaneous thermal analysis, and impedance spectroscopy. A relationship is found between the shift of the eutectic point to the region of a lower content of sulfolane compared to bulk solvents and the composition of the plasticizer, in which the samples had the best conductivity of 0.76 mS/cm at 30°C.

作者简介

R. Kayumov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kayumov@icp.ac.ru
Chernogolovka, Russia

A. Radaeva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kayumov@icp.ac.ru
Chernogolovka, Russia

A. Krupina

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences; Moscow Institute of Physics and Technology

Email: kayumov@icp.ac.ru
Chernogolovka, Russia; Dolgoprudny, Moscow oblast, Russia

K. Tarusina

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kayumov@icp.ac.ru
Chernogolovka, Russia

A. Lapshin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: kayumov@icp.ac.ru
Chernogolovka, Russia

L. Shmygleva

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kayumov@icp.ac.ru
Chernogolovka, Russia

参考

  1. Fan X., Wang C. // Chem. Soc. Rev. 2021. V. 50. P. 10 486.
  2. Gibbs H.H., Griffin R.N. // Patent 3041317A US. 1962.
  3. Connolly D.J., Gresham W.F. // Patent 3282875 US. 1966.
  4. Kusoglu A., Weber A.Z. // Chem. Rev. 2017. V. 117. P. 987.
  5. Zhu L.Y., Li Y.C., Liu J. et al. // Pet. Sci (China). 2021. V. 19. P. 1371.
  6. Ng W.W., Thiam H.S., Pang Y.L. et al. // Membranes (Basel). 2022. V. 12. № 5. P. 506.
  7. Jiang B., Wu L., Yu L. et al. // J. Membr. Sci. 2016. V. 510. P. 18.
  8. Sanginov E.A., Kayumov R.R., Shmygleva L.V. et al. // Solid State Ionics. 2017. V. 300. P. 26.
  9. Yaroslavtsev A.B., Novikova S.A., Voropaeva D.Y. et al. // Batteries (Basel). 2022. V. 8. P. 162.
  10. Doyle M., Lewittes M.E., Roelofs M.G. et al. // J. Phys. Chem. B. 2001. V. 105. P. 9387.
  11. Doyle M., Lewittes M.E., Roelofs M.G. et al. // J. Membr. Sci. 2001. V. 184. P. 257.
  12. Sachan S., Ray C.A., Perusich S.A. // Polym. Eng. Sci. 2002. V. 42. P. 1469.
  13. Su L., Darling R.M., Gallagher K.G. et al. // J. Electrochem. Soc. 2016. V. 163. P. A5253.
  14. Krupina A.A., Kayumov R.R., Nechaev G.V. et al. // Membranes (Basel). 2022. V. 12. № 9. P. 840.
  15. Воропаева Д.Ю., Новикова С.А., Ярославцев А.Б. // Успехи химии. 2020. Т. 89. № 10. С. 1132.
  16. Kulova T., Skundin A., Chekannikov A. et al. // Batteries. 2018. V. 4. № 4. P. 61.
  17. Voropaeva D.Y., Novikova S.A., Kulova T.L. et al. // Solid State Ionics. 2018. V. 324. P. 28.
  18. Воропаева Д.Ю., Ярославцев А.Б. // Мембраны и мембр. технологии. 2022. Т. 12. № 4. С. 315.
  19. Карелин А.И., Каюмов Р.Р., Сангинов Е.А. и др. // Мембр. мембр. технол. 2016. Т. 6. № 4. С. 366.
  20. Каюмов Р.Р., Шмыглева Л.В., Евщик Е.Ю. и др. // Электрохимия. 2021. Т. 57. № 8. С. 507.
  21. Kayumov R.R., Sanginov E.A., Shmygleva L.V. et al. // J. Electrochem. Soc. 2019. V. 166. P. F3216.
  22. Guglielmi M., Aldebert P., Pineri M. // J. Appl. Electrochem. 1989. V. 19. P. 167.
  23. Voropaeva D.Y., Novikova S.A., Kulova T.L. et al. // Ionics. 2018. V. 24. P. 1685.
  24. Voropaeva D., Novikova S., Xu T. et al. // J. Phys. Chem. B. 2019. V. 123. № 48. P. 10217.
  25. Сангинов Е.А., Евщик Е.Ю., Каюмов Р.Р. и др. // Электрохимия. 2015. Т. 51. № 10. С. 1115.
  26. Istomina A.S., Yaroslavtseva T.V., Reznitskikh O.G. et al. // Polymers (Basel). 2021. V. 13. № 7. P. 1150.
  27. Sanginov E.A., Borisevich S.S., Kayumov R.R. et al. // Electrochim. Acta. 2021. V. 373. P. 137914.
  28. Cai Z., Liu Y., Liu S. et al. // Energy Environ. Sci. 2012. V. 5. P. 5690.
  29. Liu Y., Cai Z., Tan L. et al. // Ibid. P. 9007.
  30. Cao C., Wang H., Liu W. et al. // Intern. J. Hydrogen Energy. 2014. V. 39. P. 16110.
  31. Simari C., Tuccillo M., Brutti S. et al. // Electrochim. Acta. 2022. V. 410. P. 139936.
  32. Резницких О.Г., Истомина А.С., Борисевич С.С. и др. // ЖФХ. 2021. Т. 95. № 6. С. 867.
  33. Fulem M., Růžička K., Růžička M. // Fluid Phase Equilib. 2011. V. 303. № 2. P. 205.
  34. Ahlers J., Lohmann J., Gmehling J. // J. Chem. Eng. Data. 1999. V. 44. № 4. P. 727.
  35. Domalski E.S., Hearing E.D. // J. Phys. Chem. Ref. Data. 1990. V. 19. P. 881.
  36. Jannelli L., Pansini M. // J. Chem. Eng. Data. 1985. V. 30. P. 428.
  37. Feldheim D.L., Lawson D.R., Martin C.R. // J. Polym. Sci. B. 1993. V. 31. P. 953.
  38. Thompson E.L., Capehart T.W., Fuller T.J. et al. // J. Electrochem. Soc. 2006. V. 153. P. A2351.
  39. Lue S.J., Shieh S.J. // J. Macromol. Sci. B. 2009. V. 48. P. 114.
  40. Смирнов В.А., Дубовицкий В.А., Денисов Н.Н. и др. // Хим. физика. 2018. Т. 37. № 6. P. 72.
  41. Gruger A., Régis A., Schmatko T. et al. // Vib. Spectrosc. 2001. V. 26. P. 215.
  42. Karelin A.I., Kayumov R.R., Sanginov E.A. et al. // Spectrochim. Acta, Part A. 2017. V. 178. P. 94.
  43. Bushkova O.V., Sanginov E.A., Chernyuk S.D. et al. // Membranes and Membr. Technol. 2022. V. 4. № 6. P. 433.
  44. Bagheri S., Monajjemi M., Ziglari A. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. Suppl. 1. P. S140.
  45. Chen Z., Shao Z., Siddiqui M.K. et al. // Russ. J. Phys. Chem. B. 2019. V. 13. P. 156.
  46. Галашева А.Е., Рахманова О.Р., Катиг К.П. и др. // Хим. физика. 2020. Т. 39. № 11. P. 80.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (5KB)
3.

下载 (4KB)
4.

下载 (474KB)
5.

下载 (211KB)
6.

下载 (693KB)
7.

下载 (535KB)
8.

下载 (300KB)

版权所有 © Р.Р. Каюмов, А.П. Радаева, А.А. Крупина, К.А. Тарусина, А.Н. Лапшин, Л.В. Шмыглева, 2023