Selection Signal in C-Kit Ligand Gene Linked to Glucocorticoid-Regulated Neuroplasticity: a New Angle on Domestication Mechanisms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Domestication profoundly shapes the evolutionary trajectories of both humans and animals. Despite significant scientific interest, the genetic underpinnings of domestication, particularly those related to behavior, remain elusive. This paradox may be reconciled by considering that behavior-associated genes have already been identified but categorized exclusively to other functional groups. Our investigation into this hypothesis utilized goat genome and human brain transcriptome data, focusing on the pigmentation gene KITLG due to its frequent association with domestication. Through analysis of interpopulation covariation between KITLG and candidate genes in the domestic goat genome (Capra hircus), we identified eight genes evolutionarily linked with KITLG. These genes were divided into three functional categories: (i) regulation of the glucocorticoid (GC) signal, (ii) initiation, and (iii) control of structural neuroplasticity. In the human brain, the regional expression patterns of the corresponding transcripts were complementary and most pronounced in areas associated with social interaction. We propose that a mutation in KITLG may decrease the activation threshold for GC-mediated neuroplasticity in these regions, enhancing the processing of social stimuli. The association of this allele with spotted coat patterns likely facilitated its selection, with the uniqueness of the pattern promoting selective social contacts. Consequently, the genomes of domesticated animals is probably more profoundly influenced by behavioral functions than previously believed. Further research could unveil novel functional attributes of the nervous systems in both animals and humans.

Full Text

Restricted Access

About the authors

A. K. Piskunov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Russian Federation, Moscow

V. N. Voronkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Russian Federation, Moscow

E. A. Soloshenkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Russian Federation, Moscow

N. Yu. Saushkin

Lomonosov Moscow State University

Email: jvsamsonova@gmail.com
Russian Federation, Moscow

Zh. V. Samsonova

Vavilov Institute of General Genetics of the Russian Academy of Sciences; Lomonosov Moscow State University

Author for correspondence.
Email: jvsamsonova@gmail.com
Russian Federation, Moscow; Moscow

Yu. A. Stolpovsky

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Russian Federation, Moscow

References

  1. Talenti A., Bertolini F., Williams J., Moaeen-Ud-Din M., Frattini S., Coizet B., Pagnacco G., Reecy J., Rothschild M.F., Crepaldi P., Italian Goat Consortium. // J. Hered. 2018. V. 109. № 3. P. 315–319.
  2. Stella A., Nicolazzi E.L., Van Tassell C.P., Rothschild M.F., Colli L., Rosen B.D., Sonstegard T.S., Crepaldi P., Tosser-Klopp G., Joost S., the AdaptMap Consortium. // Genet. Sel. Evol. 2018. V. 50. 61.
  3. Mukhina V., Svishcheva G., Voronkova V., Stolpovsky Y., Piskunov A. // Animals (Basel). 2022. V. 12. № 3. P. 221.
  4. Shen E.H., Overly C.C., Jones A.R. // Trends neurosci. 2012. V. 35. № 12. P. 711–714.
  5. Hirata T., Morii E., Morimoto M., Kasugai T., Tsujimura T., Hirota S., Kanakura Y., Nomura S., Kitamura Y. // Development (Cambridge, England). 1993. V. 19. № 1. P. 49–56.
  6. Zhang S.C., Fedorof S. // J. Neurosci. Res. 1997. V. 47. № 1. P. 1–15.
  7. Jin K., Ma X.O., Sun Y., Xie L., Greenberg D.A. // J. Clin. Investigation. 2002. V. 110. № 3. P. 311–319.
  8. Lennartsson J., Rönnstrand L. // Physiol. Rev. 2012. V. 92 № 4 P. 619‒1649.
  9. Yang Z., Shi H., Ma P., Zhao S., Kong Q., Bian T., Gong C., Zhao Q., Liu Y., Qi X., Zhang X., Han Y., Liu J., Li Q., Chen H., Su B. // Mol. Biol. Evol. 2018. V. 35. № 9. P. 2272‒2283.
  10. Guijarro P., Wang Y., Ying Y., Yao Y,. Jieyi X., Yuan X. // Dev. Neurobiol. 2013. V. 73. №. 12. P. 871‒887.
  11. Tantra M., Guo L., Kim J., Zainolabidin N., Eulenburg V., Augustine G.J., Chen A.I. // Genes brain behav. 2018. V. 17. № 6. P. e12466.
  12. Kuwahara N., Nicholson K., Isaacs L., MacLusky N.J. // Androg. Clin. Res. Ther. 2021. V. 2. № 1. P. 216–230.
  13. Gulyaeva N.V. // Biochem. Moscow. 2023. V. 88. P. 565–589.
  14. Olusola A. Ajilore, Robert M. Sapolsky. // Neuroendocrinology. 1999. V. 69. № 2. P. 138–144
  15. Li X., Qiu W., Deng L., Lin J., Huang W., Xu Y., Zhang M., Jones N.C., Lin R., Xu H., Lin L., Li P., Wang X. // J. Transl. Med. 2022. V. 20. № 1. P. 406.
  16. Lee D., Kim E., Tanaka-Yamamoto K. // Front. Cell Dev. Biol. 2016. V. 4. P. 92.
  17. Zhao Y.F., Tang Y., Illes P. // Front. Mol. Neurosci. 2021. V. 14. P. 641570.
  18. Kesavan J., Watters O., de Diego-Garcia L., Méndez A.M., Alves M., Dinkel K., Hamacher M., Prehn J.H.M., Henshall D.C., Engel T. Purinergic signalling. 2023. 10.1007/s11302-023-09957-8. Advance online publication.
  19. Granja-Galeano G., Dominguez-Rubio A.P., Zappia C.D., Wolfson M., Sanz-Blasco S., Aisemberg J., Zorrilla-Zubilete M., Fernandez N., Franchi A., Fitzsimons C.P., Monczor F. // Neuropharmacology. 2023. V. 239. P. 109674.
  20. Melroy W.E., Stephens S.H., Sakai J.T., Kamens H.M., McQueen M.B., Corley R.P., Stallings M.C., Hopfer C.J., Krauter K.S., Brown S.A., Hewitt J.K., Ehringer M.A. // Behav. Genet. 2014. V. 44. № 4. P. 356‒367.
  21. Da Silva C.A., Heilbock C., Kassel O., Frossard N. // FASEB J. 2003. V. 17. № 15. P. 2334‒2336.
  22. Gulyaeva N. // Neurochem. Res. 2019. V. 44. P. 1306–1322.
  23. Dutta S.S., Andonova A.A., Wöellert T., Hewett S.J., Hewett J.A. // Neurobiol. Dis. 2022. V. 168. P. 105689.
  24. Peña-Altamira L.E., Polazzi, E., Giuliani P., Beraudi A., Massenzio F., Mengoni I., Poli A., Zuccarini M., Ciccarelli R., Di Iorio P., Virgili M., Monti B., & Caciagli F. // Neurochem. Int. 2018. V. 115. P. 37–49.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of the value of the factor of total variance of mRNA expression levels of KITLG, FAAH, 11BHSD1, DGKH genes in human brain microstructures

Download (108KB)

Copyright (c) 2024 Russian Academy of Sciences