Selection Signal in C-Kit Ligand Gene Linked to Glucocorticoid-Regulated Neuroplasticity: a New Angle on Domestication Mechanisms

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Domestication profoundly shapes the evolutionary trajectories of both humans and animals. Despite significant scientific interest, the genetic underpinnings of domestication, particularly those related to behavior, remain elusive. This paradox may be reconciled by considering that behavior-associated genes have already been identified but categorized exclusively to other functional groups. Our investigation into this hypothesis utilized goat genome and human brain transcriptome data, focusing on the pigmentation gene KITLG due to its frequent association with domestication. Through analysis of interpopulation covariation between KITLG and candidate genes in the domestic goat genome (Capra hircus), we identified eight genes evolutionarily linked with KITLG. These genes were divided into three functional categories: (i) regulation of the glucocorticoid (GC) signal, (ii) initiation, and (iii) control of structural neuroplasticity. In the human brain, the regional expression patterns of the corresponding transcripts were complementary and most pronounced in areas associated with social interaction. We propose that a mutation in KITLG may decrease the activation threshold for GC-mediated neuroplasticity in these regions, enhancing the processing of social stimuli. The association of this allele with spotted coat patterns likely facilitated its selection, with the uniqueness of the pattern promoting selective social contacts. Consequently, the genomes of domesticated animals is probably more profoundly influenced by behavioral functions than previously believed. Further research could unveil novel functional attributes of the nervous systems in both animals and humans.

Texto integral

Acesso é fechado

Sobre autores

A. Piskunov

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Rússia, Moscow

V. Voronkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Rússia, Moscow

E. Soloshenkova

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Rússia, Moscow

N. Saushkin

Lomonosov Moscow State University

Email: jvsamsonova@gmail.com
Rússia, Moscow

Zh. Samsonova

Vavilov Institute of General Genetics of the Russian Academy of Sciences; Lomonosov Moscow State University

Autor responsável pela correspondência
Email: jvsamsonova@gmail.com
Rússia, Moscow; Moscow

Yu. Stolpovsky

Vavilov Institute of General Genetics of the Russian Academy of Sciences

Email: jvsamsonova@gmail.com
Rússia, Moscow

Bibliografia

  1. Talenti A., Bertolini F., Williams J., Moaeen-Ud-Din M., Frattini S., Coizet B., Pagnacco G., Reecy J., Rothschild M.F., Crepaldi P., Italian Goat Consortium. // J. Hered. 2018. V. 109. № 3. P. 315–319.
  2. Stella A., Nicolazzi E.L., Van Tassell C.P., Rothschild M.F., Colli L., Rosen B.D., Sonstegard T.S., Crepaldi P., Tosser-Klopp G., Joost S., the AdaptMap Consortium. // Genet. Sel. Evol. 2018. V. 50. 61.
  3. Mukhina V., Svishcheva G., Voronkova V., Stolpovsky Y., Piskunov A. // Animals (Basel). 2022. V. 12. № 3. P. 221.
  4. Shen E.H., Overly C.C., Jones A.R. // Trends neurosci. 2012. V. 35. № 12. P. 711–714.
  5. Hirata T., Morii E., Morimoto M., Kasugai T., Tsujimura T., Hirota S., Kanakura Y., Nomura S., Kitamura Y. // Development (Cambridge, England). 1993. V. 19. № 1. P. 49–56.
  6. Zhang S.C., Fedorof S. // J. Neurosci. Res. 1997. V. 47. № 1. P. 1–15.
  7. Jin K., Ma X.O., Sun Y., Xie L., Greenberg D.A. // J. Clin. Investigation. 2002. V. 110. № 3. P. 311–319.
  8. Lennartsson J., Rönnstrand L. // Physiol. Rev. 2012. V. 92 № 4 P. 619‒1649.
  9. Yang Z., Shi H., Ma P., Zhao S., Kong Q., Bian T., Gong C., Zhao Q., Liu Y., Qi X., Zhang X., Han Y., Liu J., Li Q., Chen H., Su B. // Mol. Biol. Evol. 2018. V. 35. № 9. P. 2272‒2283.
  10. Guijarro P., Wang Y., Ying Y., Yao Y,. Jieyi X., Yuan X. // Dev. Neurobiol. 2013. V. 73. №. 12. P. 871‒887.
  11. Tantra M., Guo L., Kim J., Zainolabidin N., Eulenburg V., Augustine G.J., Chen A.I. // Genes brain behav. 2018. V. 17. № 6. P. e12466.
  12. Kuwahara N., Nicholson K., Isaacs L., MacLusky N.J. // Androg. Clin. Res. Ther. 2021. V. 2. № 1. P. 216–230.
  13. Gulyaeva N.V. // Biochem. Moscow. 2023. V. 88. P. 565–589.
  14. Olusola A. Ajilore, Robert M. Sapolsky. // Neuroendocrinology. 1999. V. 69. № 2. P. 138–144
  15. Li X., Qiu W., Deng L., Lin J., Huang W., Xu Y., Zhang M., Jones N.C., Lin R., Xu H., Lin L., Li P., Wang X. // J. Transl. Med. 2022. V. 20. № 1. P. 406.
  16. Lee D., Kim E., Tanaka-Yamamoto K. // Front. Cell Dev. Biol. 2016. V. 4. P. 92.
  17. Zhao Y.F., Tang Y., Illes P. // Front. Mol. Neurosci. 2021. V. 14. P. 641570.
  18. Kesavan J., Watters O., de Diego-Garcia L., Méndez A.M., Alves M., Dinkel K., Hamacher M., Prehn J.H.M., Henshall D.C., Engel T. Purinergic signalling. 2023. 10.1007/s11302-023-09957-8. Advance online publication.
  19. Granja-Galeano G., Dominguez-Rubio A.P., Zappia C.D., Wolfson M., Sanz-Blasco S., Aisemberg J., Zorrilla-Zubilete M., Fernandez N., Franchi A., Fitzsimons C.P., Monczor F. // Neuropharmacology. 2023. V. 239. P. 109674.
  20. Melroy W.E., Stephens S.H., Sakai J.T., Kamens H.M., McQueen M.B., Corley R.P., Stallings M.C., Hopfer C.J., Krauter K.S., Brown S.A., Hewitt J.K., Ehringer M.A. // Behav. Genet. 2014. V. 44. № 4. P. 356‒367.
  21. Da Silva C.A., Heilbock C., Kassel O., Frossard N. // FASEB J. 2003. V. 17. № 15. P. 2334‒2336.
  22. Gulyaeva N. // Neurochem. Res. 2019. V. 44. P. 1306–1322.
  23. Dutta S.S., Andonova A.A., Wöellert T., Hewett S.J., Hewett J.A. // Neurobiol. Dis. 2022. V. 168. P. 105689.
  24. Peña-Altamira L.E., Polazzi, E., Giuliani P., Beraudi A., Massenzio F., Mengoni I., Poli A., Zuccarini M., Ciccarelli R., Di Iorio P., Virgili M., Monti B., & Caciagli F. // Neurochem. Int. 2018. V. 115. P. 37–49.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Distribution of the value of the factor of total variance of mRNA expression levels of KITLG, FAAH, 11BHSD1, DGKH genes in human brain microstructures

Baixar (108KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024