Молекулярное моделирование взаимодействия кластера хромсодержащего полиакрилонитрила с газами-поллютантами
- Авторы: Авилова М.М.1, Золотарёва Н.В.2, Попова О.В.1
-
Учреждения:
- Донской государственный технический университет
- Астраханский государственный университет
- Выпуск: Том 42, № 4 (2023)
- Страницы: 12-19
- Раздел: Строение химических соединений, квантовая химия, спектроскопия
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/674875
- DOI: https://doi.org/10.31857/S0207401X23040027
- EDN: https://elibrary.ru/MUUHYE
- ID: 674875
Цитировать
Аннотация
Оценена возможность адсорбции приоритетных газов-поллютантов (диоксида азота, метана, аммиака, оксида серы (II), сероводорода, озона, монооксида углерода, оксида углерода (II), хлора) на поверхности хромсодержащего пиролизованного полиакрилонитрила (пПАН). Построена модель кластера хромсодержащего пПАН (Cr–ПАН). Методом молекулярного моделирования в работе определены термодинамические показатели систем “кластер Cr–пПАН – молекула газа”, “кластер Cr–пПАН – молекула кислорода”, “кластер Cr–пПАН – молекула воды”, “кластер Cr–ПАН – молекула кислорода” – молекула газа, кластер Cr–пПАН – молекула воды – молекула газа и проведено их сравнение. Выявлены влияние молекулы воды на процесс адсорбции газов-поллютантов на поверхности кластера Cr–ПАН и отсутствие влияния молекулы кислорода, находящихся в непосредственной близости от кластеров. Установлено, что Cr–пПАН обладает свойством селективной адсорбции следующих газов: диоксида азота, хлора и аммиака. В рамках теории функционала плотности оценены силовые параметры структуры Cr–пПАН и подтверждено увеличение зоны контактной поверхности при внедрении в нее молекулы Cr2O3.
Об авторах
М. М. Авилова
Донской государственный технический университет
Email: olvp2808@rambler.ru
Россия, Ростов-на-Дону
Н. В. Золотарёва
Астраханский государственный университет
Email: olvp2808@rambler.ru
Россия, Астрахань
О. В. Попова
Донской государственный технический университет
Автор, ответственный за переписку.
Email: olvp2808@rambler.ru
Россия, Ростов-на-Дону
Список литературы
- Ke F., Zhang Q., Ji L. et al. // Compos. Commun. 2021. V. 27. 100817; https://doi.org/10.1016/j.coco.2021.100817
- Герасимов Г.Н., Громов В.Ф., Иким М.И., Трахтенберг Л.И. // Хим. физика. 2021. V. 40. № 11. P. 65; https://doi.org/10.31857/S0207401X21110030
- Боднева В.Л., Кожушнер М.А., Посвянский В.С., Трахтенберг Л.И. // Хим. физика. 2019. V. 38. № 1. P. 75; https://doi.org/10.1134/S0207401X19010060
- Wang W., Zheng Y., Jin X. et al. // Nano Energy. 2019. V. 56. P. 588; https://doi.org/10.1016/j.nanoen.2018.11.082
- Efimov M.N., Sosenkin V.E., Volfkovich Yu.M. et al. // Electrochem. Commun. 2018. V. 96. P. 98; https://doi.org/10.1016/j.elecom.2018.10.016
- Imanian Z., Hormozi F., Torab-Mostaedi M., Asadollahzadeh M. // Sep. Purif. Technol. 2022. V. 289. 120749; https://doi.org/10.1016/j.seppur.2022.120749
- Kozlov V.V., Karpacheva G.P., Petrov V.S., Lazovskaya E.V. // Polym. Sci., Ser. A. 2001. V. 43. P. 20.
- Laffont L., Monthioux M., Serin V. et al. // Carbon. 2004. V. 42. P. 2485; https://doi.org/10.1016/j.carbon.2004.04.043
- Yoshida H., Sato N. // Rus. J. Phys. Chem. A. 2006. V. 110. P. 4232; https://doi.org/10.1021/jp0546397
- Kozlov V.V., Kozhitov L.V., Kostishyn V.G. et al. // IOP Conf. Ser: Mater. Sci. Eng. 2009. V. 5. 012021; https://doi.org/10.1088/1757-899X/5/1/012021
- Merdrignac-Conanec O., Bernicot Y., Guyader J. // Sens. Actuators, B. 2000. V. 63. P. 86; https://doi.org/10.1016/S0925-4005(00)00302-6
- Ghorpade R.V., Cho D.W., Hong S.C. // Carbon. 2017. V. 121. P. 502; https://doi.org/10.1016/j.carbon.2017.06.015
- Kim Ye-Na, Park Eun-Young, Lee Deuk Yong // J. Korean Ceram. Soc. 2007. V. 44. P. 194; https://doi.org/10.4191/kcers.2007.44.4.194
- Ерёмин В.С., Бронштейн Л.М., Дьячкова В.П. и др. // Высокомолекуляр. соединения. А. 1993. Т. 35. № 4. С. 450.
- Солодовников С.П., Бронштейн Л.М., Логинова Т.П. и др. // Высокомолекуляр. соединения. Б. 1993. Т. 35. № 1. С. 26.
- Авилова М.М., Марьева Е.А., Попова О.В., Финоченко Т.А. // ЖФХ. 2020. Т. 94. № 6. С. 898; https://doi.org/10.31857/S0044453720060047
- Авилова М.М., Марьева Е.А., Попова О.В., Иванова Т.Г. // Изв. вузов. Химия и химическая технология. 2020. Т. 63. № 4. С. 49; https://doi.org/10.6060/ivkkt.20206304.6008
- Авилова М.М., Петров В.В. // Хим. физика. 2018. Т. 37. № 4. С. 69; https://doi.org/10.7868/S0207401X18040088
- Авилова М.М., Петров В.В. // Хим. физика. 2017. Т. 36. № 7. С. 90; https://doi.org/10.7868/S0207401X17070020
- Avilova M.M., Petrov V.V. // Chemosensors. 2018. V. 6. № 3. P. 39; https://doi.org/10.3390/chemosensors6030039
- Gupta A.K., Paliwal D.K., Bajaj P. // J. Appl. Polym. Sci. 1995. V. 58. № 7. P. 1161; https://doi.org/10.1002/app.1995.070580710
- Surianarayanan M., Vijayaraghavan R., Raghavan K.V. // J. Polym. Sci., Part A: Polym. Chem. 1998. V. 36. № 14. P. 2503; https://doi.org/10.1002/(SICI)1099-0518(199810)36: 14<2503::AID-POLA9>3.0.CO;2-T
- Allinger N.L. // J. Amer. Chem. Soc. 1977. V. 99. № 2). P. 8127; https://doi.org/10.1021/ja00467a001
- Stewart J.J.P. // J. Mol. Modeling. 2013. V. 19. № 1. P. 1; https://doi.org/10.1007/s00894-012-1667-x
- Klamt A., Schuurmann G. // J. Chem. Soc., Perkin Trans. 2. 1993. № 5. P. 799; https://doi.org/10.1039/P29930000799
- Pritchard B.P., Altarawy D., Didier B. et al. // J. Chem. Inf. Model. 2019. V. 59. № 11. P. 4814; https://doi.org/10.1021/acs.jcim.9b00725
- Anandan K., Rajendran V. // Mater. Lett. 2015. V. 146. P. 99; https://doi.org/10.1016/j.matlet.2015.02.014
- Baker J. // J. Comp. Chem. 1986. V. 7. № 4. P. 385; https://doi.org/10.1002/jcc.540070402
- Пономарев Д.А. Дис. … канд. физ.-мат. наук. Екатеринбург: Институт физики металлов им. М.Н. Михеева УрО РАН, 2018.
- MOPAC2016 / James J.P. Stewart, Stewart Computational Chemistry/ Colorado Springs, CO, USA, 2016; http://openmopac.net/
- Ito S., Fedorov D.G., Okamoto Y., Irle S. // Comput. Phys. Commun. 2018. V. 228. P. 152; https://doi.org/10.1016/j.cpc.2018.01.014
- Abdullah M.M., Rajab F.M., Al-Abbas S.M. // AIP Advances. 2014. V. 4. 027121; https://doi.org/10.1063/1.4867012
- Skjelbred K.M., Astrand Per-Olof et al. // AIP Conference Proceedings. 2015. V. 1702. 090061; https://doi.org/10.1063/1.4938869
Дополнительные файлы
