Magnetic nanoparticles as a platform for delivery of the photosensitizer methylene blue to HCT116 tumor cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Hybrid nanosystems based on magnetic iron oxide nanoparticles (IONPs) and human serum albumin (HSA), containing methylene blue (MB) as a model photosensitizer, have been synthesized. The resulting HSA@IONP nanosystems were characterized for size and composition using UV/visible spectrophotometry (particularly, using the Bradford method), dynamic light scattering, and electron magnetic resonance. A study of the dark and photoinduced cytotoxicity of MB, IONP, HSA@IONP, MB–IONP, MB–(HSA@IONP) on of human colon adenocarcinoma HCT116 cells was carried out. Under the experimental conditions, the difference between the dark and light-induced cytotoxicity of nanosystems on cells was significantly enhanced when the photosensitizer was immobilized on the surface of the carrier particles compared to free photosensitizer in equivalent concentrations.

Texto integral

Acesso é fechado

Sobre autores

M. Nguyen

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

A. Markova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

B. Batchaeva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

M. Gorobets

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

A. Toroptseva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

M. Motyakin

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

M. Abdullina

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: anna.v.bychkova@gmail.com
Rússia, Moscow

A. Bychkova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: anna.v.bychkova@gmail.com
Rússia, Moscow

Bibliografia

  1. Q. Chen, Z. Liu. Adv. Mater. 28, 10557–10566 (2016). https://doi.org/10.1002/adma.201600038
  2. L.L. Israel, A. Galstyan, E. Holler et al. J. Control. Release. 320, 45 (2020). https://doi.org/10.1016/j.jconrel.2020.01.009
  3. A.S. Chubarov. Magnetochemistry 8, 13 (18 pages) (2022). https://doi.org/10.3390/magnetochemistry8020013
  4. N.G. Berdnikova, A.E. Dontsov, M.V. Erokhina et al. Russ. J. Phys. Chem. B. 13, 942 (2019). https://doi.org/10.1134/S1990793119060150
  5. N.V. Menshutina, A.A. Uvarova, M.S. Mochalova et al. Russ. J. Phys. Chem. B. 17, № 7, 1507 (2023). https://doi.org/10.1134/S1990793123070163
  6. M.A. Kolyvanova, M.A. Klimovich, O.V. Dement’eva et al. Russ. J. Phys. Chem. B. 17, 206 (2023). https://doi.org/10.1134/S1990793123010062
  7. A.V. Povolotskiy, D.A. Soldatova, D.A. Lukyanov et al. Russ. J. Phys. Chem. B 17, 1398 (2023). https://doi.org/10.1134/S1990793123060192
  8. J.P. Tardivo, A. Del Giglio, C.S. de Oliveira et al. Photodiagnosis Photodyn. Ther. 2, 175 (2005). https://doi.org/10.1016/S1572-1000(05)00097-9
  9. Y. Zhang, Z. Ye, R. He et al. Colloids Surfaces B Biointerfaces 224, 113201 (2023). https://doi.org/10.1016/j.colsurfb.2023.113201
  10. V.H. Toledo, T.M. Yoshimura, S.T. Pereira et al. J. Photochem. Photobiol. B Biol. 209, 111956 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111956
  11. J.A. Rodrigues, J.H. Correia. Int. J. Mol. Sci. 24, 12204 (2023). https://doi.org/10.3390/ijms241512204
  12. I.D. Burtsev, A.E. Egorov, A.A. Kostyukov et al. Russ. J. Phys. Chem. B. 16, 109 (2022). https://doi.org/10.1134/S1990793122010195
  13. M.A. Klimovich, N.N Sazhina, A.S. Radchenko et al. Russ. J. Phys. Chem. B. 15, 93 (2021). https://doi.org/10.1134/S1990793121010206
  14. A.V. Bychkova, M.N. Yakunina, M.V. Lopukhova et al. Pharmaceutics. 14, 2771 (2022). https://doi.org/10.3390/pharmaceutics14122771
  15. M.T. Nguyen, E.V. Guseva, A.N. Ataeva et al. Int. J. Mol. Sci. 24, 7995 (2023). https://doi.org/10.3390/ijms24097995
  16. F.I. Dalidchik, O.A. Lopatina, S.A. Kovalevsky et al. Russ. J. Phys. Chem. B. 18, 266 (2024). https://doi.org/10.1134/S1990793124010238
  17. Y.-J.Hu, W. Li, Y. Liu et al. J. Pharm. Biomed. Anal. 39, 740 (2005). https://doi.org/10.1016/j.jpba.2005.04.009

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Survival of human colon adenocarcinoma HCT116 cells exposed to the studied samples in dark (a) and light (b) experiments. In the case of particles without MS (NCHO and HSA@NCHO), the cells were incubated with an amount of particles equivalent to particles with MS (MS–NCHO and MS–(HSA@NCHO), respectively). The names of the studied systems, their structures, and their designations present in the figures are given in the upper part of the figure.

Baixar (200KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025