Kinetics of thermal decomposition of polymethylmethacrylate in an oxidizing environment
- Autores: Salgansky E.A.1, Salganskaya M.V.1, Glushkov D.O.2
-
Afiliações:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science
- National Research Tomsk Polytechnic University
- Edição: Volume 43, Nº 7 (2024)
- Páginas: 10-16
- Seção: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/674921
- DOI: https://doi.org/10.31857/S0207401X24070025
- ID: 674921
Citar
Resumo
Using thermogravimetric analysis (TGA), the kinetic constants of the thermal decomposition of polymethylmethacrylate (PMMA) in an oxidizing environment were determined over a wide range of sample heating rates. The values of the kinetic constants of polymer decomposition were determined by the Kissinger method. It is shown that as the degree of polymer decomposition increases, the rate constant decreases at a constant temperature.
Palavras-chave
Texto integral

Sobre autores
E. Salgansky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science
Autor responsável pela correspondência
Email: sea@icp.ac.ru
Rússia, Chernogolovka
M. Salganskaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science
Email: sea@icp.ac.ru
Rússia, Chernogolovka
D. Glushkov
National Research Tomsk Polytechnic University
Email: sea@icp.ac.ru
Rússia, Tomsk
Bibliografia
- M.K. Eriksen, J.D. Christiansen, A.E. Daugaard, et al., Waste Manag. 96, 75 (2019). https://doi.org/10.1016/j.wasman.2019.07.005
- G.X. Xi, S.L. Song and Q. Liu, Thermochim. Acta 435 (1), 64 (2005). https://doi.org/10.1016/j.tca.2005.05.005
- M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, et al., Acta Astronaut. 204, 682 (2023). https://doi.org/10.1016/j.actaastro.2022.08.039
- E.A. Salgansky and N.A. Lutsenko, Aerosp. Sci. Technol. 109, 106420 (2021). https://doi.org/10.1016/j.ast.2020.106420
- A.D. Pomogailo, A.S. Rozenberg and G.I. Dzhardimalieva, Russ. Chem. Rev. 80 (3), 257 (2011). https://doi.org/10.1070/RC2011v080n03ABEH004079
- E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 39 (1), 37 (2003). https://doi.org/10.1023/A:1022193117840
- E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 42, 55 (2006). https://doi.org/10.1007/s10573-006-0007-9
- V.N. Mikhalkin, S.I. Sumskoy, A.M. Tereza, et al., Russ. J. Phys. Chem. B. 16 (3), 318 (2022). https://doi.org/10.31857/S0207401X2208009X
- B.P. Yur’ev and V.A. Dudko, Russ. J. Phys. Chem. B. 16 (1), 31 (2022). https://doi.org/10.1134/S1990793122010171
- A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, et al., Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
- V.M. Gol’dberg, S.M. Lomakin, A.V. Todinova, et al., Russ. Chem. Bull. 59 (4), 806 (2010). https://doi.org/10.1007/s11172-010-0165-5
- M. Sieradzka, A. Mlonka-Mędrala and A. Magdziarz, Fuel. 330, 125566 (2022). https://doi.org/10.1016/j.fuel.2022.125566
- A.V. Zhuikov and D.O. Glushkov, Solid Fuel Chem. 56 (5), 353 (2022). https://doi.org/10.31857/S0023117722050115
- G.M. Nazin, V.V. Dubikhin, A.I. Kazakov, et al., Russ. J. Phys. Chem. B. 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122
- H. Shen, H. Qiao and H. Zhang, Chem. Eng. J. 450, 137905 (2022). https://doi.org/10.1016/j.cej.2022.137905
- C.F. Ramirez-Gutierrez, I.A. Lujan-Cabrera, L.D. Valencia-Molina, et al., Mater. Today Commun. 33, 104188 (2022). https://doi.org/10.1016/j.mtcomm.2022.104188
- G. Lopez, M. Artetxe, M. Amutio, et al., Chem. Eng. Process. 49 (10), 1089 (2010). https://doi.org/10.1016/j.cep.2010.08.002
- W. Kaminsky, M. Predel and A. Sadiki, Polym. Degrad. Stab. 85 (3), 1045 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.05.002
- R.S. Braido, L.E.P. Borges and J.C. Pinto, J. Anal. Appl. Pyrol. 132, 47 (2018). https://doi.org/10.1016/j.jaap.2018.03.017
- M. Ferriol, A. Gentilhomme, M. Cochez, et al., Polym. Degrad. Stab. 79 (2), 271 (2003). https://doi.org/10.1016/S0141-3910(02)00291-4
- B.J. Holland and J.N. Hay, Polymer. 42, 4825 (2001). https://doi.org/10.1016/S0032-3861(00)00923-X
- B.J. Holland and J.N. Hay, Thermochim. Acta. 388, 253 (2002). https://doi.org/10.1016/S0040-6031(02)00034-5
- A.Yu. Snegirev, V.A. Talalov, V.V. Stepanov, et al., Polym. Degrad. Stab. 137, 151 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.01.008
- A. Bhargava, P. Hees and B. Andersson, Polym. Degrad. Stab. 129, 199 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.04.016
- B.L. Denq, W.Y. Chiu and K.F. Lin, J. Appl. Polym. Sci. 66, 1855 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1855::AID-APP3>3.0.CO;2-M
- K. Miura and T. Maki, Energy Fuels. 12 (5), 864 (1998). https://doi.org/10.1021/ef970212q
- J. Zhang, Z. Wang, R. Zhao, et al., Energies. 13, 3313 (2020). https://doi.org/10.3390/en13133313
- J. Zhang, T. Chen, J. Wu, et al., RSC Advances. 4, 17513 (2014). https://doi.org/ 10.1039/c4ra01445f
- S. Vyazovkin, Molecules. 25, 2813 (2020). https://doi.org/10.3390/molecules25122813
- T. Fateh, F. Richard, T. Rogaume, et al., J. Anal. Appl. Pyrolysis. 120, 423 (2016). https://doi.org/10.1016/j.jaap.2016.06.014
Arquivos suplementares
