Kinetics of thermal decomposition of polymethylmethacrylate in an oxidizing environment

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using thermogravimetric analysis (TGA), the kinetic constants of the thermal decomposition of polymethylmethacrylate (PMMA) in an oxidizing environment were determined over a wide range of sample heating rates. The values of the kinetic constants of polymer decomposition were determined by the Kissinger method. It is shown that as the degree of polymer decomposition increases, the rate constant decreases at a constant temperature.

Texto integral

Acesso é fechado

Sobre autores

E. Salgansky

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Autor responsável pela correspondência
Email: sea@icp.ac.ru
Rússia, Chernogolovka

M. Salganskaya

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science

Email: sea@icp.ac.ru
Rússia, Chernogolovka

D. Glushkov

National Research Tomsk Polytechnic University

Email: sea@icp.ac.ru
Rússia, Tomsk

Bibliografia

  1. M.K. Eriksen, J.D. Christiansen, A.E. Daugaard, et al., Waste Manag. 96, 75 (2019). https://doi.org/10.1016/j.wasman.2019.07.005
  2. G.X. Xi, S.L. Song and Q. Liu, Thermochim. Acta 435 (1), 64 (2005). https://doi.org/10.1016/j.tca.2005.05.005
  3. M.V. Salganskaya, A.Yu. Zaichenko, D.N. Podlesniy, et al., Acta Astronaut. 204, 682 (2023). https://doi.org/10.1016/j.actaastro.2022.08.039
  4. E.A. Salgansky and N.A. Lutsenko, Aerosp. Sci. Technol. 109, 106420 (2021). https://doi.org/10.1016/j.ast.2020.106420
  5. A.D. Pomogailo, A.S. Rozenberg and G.I. Dzhardimalieva, Russ. Chem. Rev. 80 (3), 257 (2011). https://doi.org/10.1070/RC2011v080n03ABEH004079
  6. E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 39 (1), 37 (2003). https://doi.org/10.1023/A:1022193117840
  7. E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 42, 55 (2006). https://doi.org/10.1007/s10573-006-0007-9
  8. V.N. Mikhalkin, S.I. Sumskoy, A.M. Tereza, et al., Russ. J. Phys. Chem. B. 16 (3), 318 (2022). https://doi.org/10.31857/S0207401X2208009X
  9. B.P. Yur’ev and V.A. Dudko, Russ. J. Phys. Chem. B. 16 (1), 31 (2022). https://doi.org/10.1134/S1990793122010171
  10. A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, et al., Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
  11. V.M. Gol’dberg, S.M. Lomakin, A.V. Todinova, et al., Russ. Chem. Bull. 59 (4), 806 (2010). https://doi.org/10.1007/s11172-010-0165-5
  12. M. Sieradzka, A. Mlonka-Mędrala and A. Magdziarz, Fuel. 330, 125566 (2022). https://doi.org/10.1016/j.fuel.2022.125566
  13. A.V. Zhuikov and D.O. Glushkov, Solid Fuel Chem. 56 (5), 353 (2022). https://doi.org/10.31857/S0023117722050115
  14. G.M. Nazin, V.V. Dubikhin, A.I. Kazakov, et al., Russ. J. Phys. Chem. B. 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122
  15. H. Shen, H. Qiao and H. Zhang, Chem. Eng. J. 450, 137905 (2022). https://doi.org/10.1016/j.cej.2022.137905
  16. C.F. Ramirez-Gutierrez, I.A. Lujan-Cabrera, L.D. Valencia-Molina, et al., Mater. Today Commun. 33, 104188 (2022). https://doi.org/10.1016/j.mtcomm.2022.104188
  17. G. Lopez, M. Artetxe, M. Amutio, et al., Chem. Eng. Process. 49 (10), 1089 (2010). https://doi.org/10.1016/j.cep.2010.08.002
  18. W. Kaminsky, M. Predel and A. Sadiki, Polym. Degrad. Stab. 85 (3), 1045 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.05.002
  19. R.S. Braido, L.E.P. Borges and J.C. Pinto, J. Anal. Appl. Pyrol. 132, 47 (2018). https://doi.org/10.1016/j.jaap.2018.03.017
  20. M. Ferriol, A. Gentilhomme, M. Cochez, et al., Polym. Degrad. Stab. 79 (2), 271 (2003). https://doi.org/10.1016/S0141-3910(02)00291-4
  21. B.J. Holland and J.N. Hay, Polymer. 42, 4825 (2001). https://doi.org/10.1016/S0032-3861(00)00923-X
  22. B.J. Holland and J.N. Hay, Thermochim. Acta. 388, 253 (2002). https://doi.org/10.1016/S0040-6031(02)00034-5
  23. A.Yu. Snegirev, V.A. Talalov, V.V. Stepanov, et al., Polym. Degrad. Stab. 137, 151 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.01.008
  24. A. Bhargava, P. Hees and B. Andersson, Polym. Degrad. Stab. 129, 199 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.04.016
  25. B.L. Denq, W.Y. Chiu and K.F. Lin, J. Appl. Polym. Sci. 66, 1855 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1855::AID-APP3>3.0.CO;2-M
  26. K. Miura and T. Maki, Energy Fuels. 12 (5), 864 (1998). https://doi.org/10.1021/ef970212q
  27. J. Zhang, Z. Wang, R. Zhao, et al., Energies. 13, 3313 (2020). https://doi.org/10.3390/en13133313
  28. J. Zhang, T. Chen, J. Wu, et al., RSC Advances. 4, 17513 (2014). https://doi.org/ 10.1039/c4ra01445f
  29. S. Vyazovkin, Molecules. 25, 2813 (2020). https://doi.org/10.3390/molecules25122813
  30. T. Fateh, F. Richard, T. Rogaume, et al., J. Anal. Appl. Pyrolysis. 120, 423 (2016). https://doi.org/10.1016/j.jaap.2016.06.014

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Curves of mass change during thermal decomposition of PMMA in an oxidizer flow. The numbers near the curves are the heating rates in K/min.

Baixar (86KB)
3. Fig. 2. Curves of the dependence ln(β/T 2) = f(1/T) for different values ​​of the degree of PMMA conversion: 1 – 25, 2 – 50, 3 – 75%, to determine the kinetic characteristics of its decomposition in the oxidizer flow.

Baixar (83KB)
4. Fig. 3. Temperature dependence curves ln(K) = ln(k0) − E/RT, where K is the rate constant of the PMMA decomposition reaction, k0 is the pre-exponential factor, E is the activation energy, T is the temperature, R is the universal gas constant.

Baixar (84KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024