Kinetics of thermal decomposition of polymethylmethacrylate in a carbon dioxide environment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A thermogravimetric analysis of the thermal decomposition of polymethylmethacrylate (PMMA) in a carbon dioxide flow was carried out. The kinetic constants of the process were determined. The heating rate of the sample varied over a wide range and amounted to 2, 5, 8, 20, 35 and 50 K/min. The values of the kinetic constants of PMMA decomposition were determined using the isoconversional method. For the degree of conversion of the substance from 10 to 90%, the values of activation energy for the thermal decomposition of PMMA vary in the range from 213.5 to 194.3 kJ/mol, and the values of the pre-exponential coefficient change in the range from 1.62 ⋅ 1016 to 6.85 ⋅ 1012 1/s. The average activation energy for the thermal decomposition of PMMA in a carbon dioxide flow was 206 kJ/mol.

Full Text

Restricted Access

About the authors

E. A. Salgansky

FRC of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: sea@icp.ac.ru
Russian Federation, Chernogolovka

M. V. Salganskaya

FRC of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: sea@icp.ac.ru
Russian Federation, Chernogolovka

D. O. Glushkov

National Research Tomsk Polytechnic University

Email: sea@icp.ac.ru
Russian Federation, Tomsk

References

  1. M.K. Eriksen, J.D. Christiansen, A.E. Daugaard, et al., Waste Manag. 96, 75 (2019). https://doi.org/10.1016/j.wasman.2019.07.005
  2. G.X. Xi, S.L. Song and Q. Liu, Thermochim. Acta 435 (1), 64 (2005). https://doi.org/10.1016/j.tca.2005.05.005
  3. E.A. Salgansky and N.A. Lutsenko, Aerosp. Sci. Technol. 109, 106420 (2021). https://doi.org/10.1016/j.ast.2020.106420
  4. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Russ. J. Phys. Chem. B 16 (6), 1080 (2022). https://doi.org/10.1134/S1990793122060094
  5. A.D. Pomogailo, A.S. Rozenberg and G.I. Dzhardimalieva, Russ. Chem. Rev. 80 (3), 257 (2011). https://doi.org/10.1070/RC2011v080n03ABEH004079
  6. E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 42, 55 (2006). https://doi.org/10.1007/s10573-006-0007-9
  7. E.A. Salganskii, V.P. Fursov, S.V. Glazov, et al., Combust. Explos. Shock Waves. 39 (1), 37 (2003). https://doi.org/10.1023/A:1022193117840
  8. B.P. Yur’ev and V.A. Dudko, Russ. J. Phys. Chem. B 16 (1), 31 (2022). https://doi.org/10.1134/S1990793122010171
  9. V.N. Mikhalkin, S.I. Sumskoy, A.M. Tereza, et al., Russ. J. Phys. Chem. B 16 (3), 318 (2022). https://doi.org/10.31857/S0207401X2208009X
  10. A.M. Tereza, P.V. Kozlov, G.Ya. Gerasimov, et al., Acta Astronaut. 204, 705 (2023). https://doi.org/10.1016/j.actaastro.2022.11.001
  11. M. Sieradzka, A. Mlonka-Mędrala and A. Magdziarz, Fuel. 330, 125566 (2022). https://doi.org/10.1016/j.fuel.2022.125566
  12. V.M. Gol’dberg, S.M. Lomakin, A.V. Todinova, et al., Russ. Chem. Bull. 59 (4), 806 (2010). https://doi.org/10.1007/s11172-010-0165-5
  13. A.V. Zhuikov and D.O. Glushkov, Solid Fuel Chem. 56 (5), 353 (2022). https://doi.org/10.31857/S0023117722050115
  14. H. Shen, H. Qiao and H. Zhang, Chem. Eng. J. 450, 137905 (2022). https://doi.org/10.1016/j.cej.2022.137905
  15. G.M. Nazin, V.V. Dubikhin, A.I. Kazakov, et al., Russ. J. Phys. Chem. B 16 (1), 72 (2022). https://doi.org/10.1134/S1990793122010122
  16. C.F. Ramirez-Gutierrez, I.A. Lujan-Cabrera, L.D. Valencia-Molina, et al., Mater. Today Commun. 33, 104188 (2022). https://doi.org/10.1016/j.mtcomm.2022.104188
  17. W. Kaminsky, M. Predel and A. Sadiki, Polym. Degrad. Stab. 85 (3), 1045 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.05.002
  18. G. Lopez, M. Artetxe, M. Amutio, et al., Chem. Eng. Process. 49 (10), 1089 (2010). https://doi.org/10.1016/j.cep.2010.08.002
  19. R.S. Braido, L.E.P. Borges and J.C. Pinto, J. Anal. Appl. Pyrol. 132, 47 (2018). https://doi.org/10.1016/j.jaap.2018.03.017
  20. B.J. Holland and J.N. Hay, Polymer. 42, 4825 (2001). https://doi.org/10.1016/S0032-3861(00)00923-X
  21. M. Ferriol, A. Gentilhomme, M. Cochez, et al., Polym. Degrad. Stab. 79 (2), 271 (2003). https://doi.org/10.1016/S0141-3910(02)00291-4
  22. B.J. Holland and J.N. Hay, Thermochim. Acta. 388, 253 (2002). https://doi.org/10.1016/S0040-6031(02)00034-5
  23. A. Bhargava, P. Hees and B. Andersson, Polym. Degrad. Stab. 129, 199 (2016). https://doi.org/10.1016/j.polymdegradstab.2016.04.016
  24. A.Yu. Snegirev, V.A. Talalov, V.V. Stepanov, et al., Polym. Degrad. Stab. 137, 151 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.01.008
  25. B.L. Denq, W.Y. Chiu and K.F. Lin, J. Appl. Polym. Sci. 66, 1855 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1855::AID-APP3>3.0.CO;2-M
  26. E.A. Salgansky, A.Yu. Zaichenko, D.N. Podlesniy, et al., Fuel. 210, 491 (2017). https://doi.org/10.1016/j.fuel.2017.08.103
  27. I.I. Amelin, E.A. Salgansky, N.N. Volkova, et al., Russ. Chem. Bull. 60 (6) 1150 (2011). https://doi.org/10.1007/s11172-011-0180-1
  28. K. Miura and T. Maki, Energy Fuels. 12 (5), 864 (1998). https://doi.org/10.1021/ef970212q
  29. J. Zhang, Z. Wang, R. Zhao, et al., Energies. 13, 3313 (2020). https://doi.org/10.3390/en13133313
  30. J. Zhang, T. Chen, J. Wu, et al., RSC Advances. 4, 17513 (2014). https://doi.org/10.1039/c4ra01445f
  31. S. Vyazovkin, Molecules. 25, 2813 (2020). https://doi.org/10.3390/molecules25122813

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Curves of mass change in the process of thermal decomposition of PMMA at different heating rates of samples in a carbon dioxide environment. Numbers are heating rates (K/min).

Download (16KB)
3. Fig. 2. Curves of the dependence ln(β/T 2) = f (1/T) for different values ​​of the degree of conversion of the sample (a).

Download (19KB)
4. Fig. 3. Curve of the dependence of the activation energy of thermal decomposition of PMMA on the degree of sample conversion.

Download (9KB)
5. Fig. 4. Curves of the logarithmic dependence of the rate constant of the chemical reaction of thermal decomposition of PMMA for different values ​​of the degree of sample conversion. Numbers are the degrees of sample conversion (%).

Download (19KB)

Copyright (c) 2024 Russian Academy of Sciences