Reactions of fluorine atoms with benzene, fluorobenzene and chlorobenzene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Benzene and its derivatives are extremely important substances in modern chemical technologies. However, emissions of these substances have an extremely negative impact on the atmosphere and ecology. Benzene is a substance of the second class of danger and its effect on the human body is fraught with serious consequences. In the event of man-made disasters, an urgent task is to convert benzene into less toxic substances. In this work, using a low-pressure flow reactor, the kinetic patterns of the reactions of atomic fluorine with benzene, fluorobenzene, and chlorobenzene at a temperature T = 293 K and a pressure of 0.8–1.3 Torr were established. The concentrations of reagents and products were controlled by molecular beam mass spectrometry. To determine reaction rate constants, the method of competing reactions was used. The reaction of fluorine atoms with cyclohexane was chosen as a competitor. As a result of the analysis using experimental and literature data, the following values of the rate constants of the studied reactions were obtained.

Full Text

Restricted Access

About the authors

E. S. Vasiliev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

I. I. Morozov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

N. D. Volkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

S. V. Savilov

Lomonosov Moscow State University

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

O. S. Morozova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

N. I. Butkovskaya

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow

P. S. Khomyakova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia

Email: vasiliev@chph.ras.ru
Russian Federation, Moscow; Moscow

References

  1. D. J. Smith, D. W. Setser, K. C. Kim, and D. J. Bogan, J. Phys. Chem. 81, 898 (1977). https://doi.org/10.1021/j100524a019
  2. J. Ebrecht, W. Hack, and H. G. Wagner, Ber. Bunsenges. Phys. Chem. 93, 619 (1989). https://doi.org/10.1002/bbpc.19890930520
  3. F. Markert and P. Pagsberg, Chem. Phys. Lett. 209, 445 (1993). https://doi.org/10.1016/0009-2614(93)80115-6
  4. E. S. Vasiliev, N. D. Volkov, G. V. Karpov, et al., Russ. J. Phys. Chem. A 94, 2004 (2020). https://doi.org/10.1134/S0036024420100295
  5. E. S. Vasiliev, N. D. Volkov, G. V. Karpov, et al., Russ. J. Phys. Chem. B 15, 789 (2021); https://doi.org/10.1134/S1990793121050213
  6. S. O. Adamson, D. D. Kharlampidi, A. S. Shtyrkova, et al., Atoms 11, 132 (2023). https://doi.org/10.3390/atoms11100132
  7. R. Atkinson, D. L. Baulch, R. A. Cox, et al., Atmos. Chem. Phys. 6, 3625 (2006). https://doi.org/10.5194/acp-6-3625-2006
  8. E. S. Vasiliev, G. V. Karpov, D. K. Shartava, et al., Russ. J. Phys. Chem. B 16, 388 (2022). https://doi.org/10.1134/S1990793122030113
  9. I. I. Morozov, E. S. Vasiliev, N. I. Butkovskaya, et al., Russ. J. Phys. Chem. B 17, 1091 (2023). https://doi.org/10.1134/S1990793123050251
  10. R. Pearson, J. Cowles, G. Hermann, D. Gregg, and J. Creighton, IEEE J. Quantum Electron. 9, 879 (1973). https://doi.org/10.1109/JQE.1973.1077761
  11. R. G. Manning, E. R. Grant, J. C. Merrill, N. J. Parks, and J. W. Root, Int. J. Chem. Kinet. 7, 39 (1975). https://doi.org/10.1002/kin.550070106
  12. NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/
  13. P. Heinemann-Fiedler, K. Hoyermann, and G. Rohde, Ber. Bunsenges. Phys. Chem. 94, 1400 (1990). https://doi.org/10.1002/bbpc.199000042
  14. E. S. Vasiliev, I. I. Morozov, and G. V. Karpov, Int. J. Chem. Kinet. 51, 909 (2019). https://doi.org/10.1002/kin.21319
  15. R. Atkinson, D. L. Baulch, R. A. Cox, et al., Atmos. Chem. Phys. 7, 981 (2007). https://doi.org/10.5194/acp-7-981-2007
  16. E. S. Vasiliev, I. I. Morozov, W. Hack, K.-H. Hoyermann, and M. Hold, Kinet. Catal. 47, 834 (2006). https://doi.org/10.1134/S0023158406060048
  17. S. O. Adamson, D. D. Kharlampidi, A. S. Shtyrkova, et al., Russ. J. Phys. Chem. B 18, 627 (2024). https://doi.org/10.1134/S1990793124700192
  18. I. I. Morozov, E. S. Vasiliev, N. D. Volkov, et al., Russ. J. Phys. Chem. B 16, 877 (2022). https://doi.org/10.1134/S1990793122050220
  19. Il. S. Golyak, D. R. Anfimov, I. B. Vintaykin, et al., Russ. J. Phys. Chem. B 17, 320 (2023). https://doi.org/10.1134/S1990793123020264

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the depth of conversion of the reagents of the studied reactions with atomic fluorine on the depth of conversion of cyclohexane in reaction (23): a – for benzene in reaction (1); b – for fluorobenzene in reaction (21); c – for chlorobenzene in reaction (22).

Download (53KB)
3. Fig. 2. Mass spectra of fluorobenzene and difluorobenzenes according to [12], obtained as a result of electron impact ionization at an electron energy of 70 eV. The dashed lines indicate the locations of the molecular peaks of fluorobenzene (M(1)+, m/z = 96) and cyclohexane (M(2)+, m/z = 84).

Download (108KB)
4. Fig. 3. Mass spectra of chlorobenzene and chlorofluorobenzenes according to [12], obtained as a result of electron impact ionization at an electron energy of 70 eV. The dashed lines indicate the locations of the molecular peaks of chlorobenzene (M(1)+, m/z = 112) and cyclohexane (M(2)+, m/z = 84).

Download (117KB)
5. Fig. 4. Mass spectra of C6H5Cl, C6H6 and C6H5F, normalized for C6H5Cl and C6H6 to 100% by the most intense molecular peaks of the spectra at m/z = 112 and m/z = 78, respectively. The dashed lines show the locations of the molecular peaks of chlorobenzene (M(1)+, m/z = 112) and benzene (M(2)+, m/z = 78).

Download (78KB)

Copyright (c) 2024 Russian Academy of Sciences