Reactions of fluorine atoms with benzene, fluorobenzene and chlorobenzene
- 作者: Vasiliev E.S.1, Morozov I.I.1, Volkov N.D.1, Savilov S.V.2, Morozova O.S.1, Butkovskaya N.I.1, Khomyakova P.S.1,3
-
隶属关系:
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Mendeleev University of Chemical Technology of Russia
- 期: 卷 43, 编号 10 (2024)
- 页面: 36-48
- 栏目: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/680950
- DOI: https://doi.org/10.31857/S0207401X24100035
- ID: 680950
如何引用文章
详细
Benzene and its derivatives are extremely important substances in modern chemical technologies. However, emissions of these substances have an extremely negative impact on the atmosphere and ecology. Benzene is a substance of the second class of danger and its effect on the human body is fraught with serious consequences. In the event of man-made disasters, an urgent task is to convert benzene into less toxic substances. In this work, using a low-pressure flow reactor, the kinetic patterns of the reactions of atomic fluorine with benzene, fluorobenzene, and chlorobenzene at a temperature T = 293 K and a pressure of 0.8–1.3 Torr were established. The concentrations of reagents and products were controlled by molecular beam mass spectrometry. To determine reaction rate constants, the method of competing reactions was used. The reaction of fluorine atoms with cyclohexane was chosen as a competitor. As a result of the analysis using experimental and literature data, the following values of the rate constants of the studied reactions were obtained.
全文:

作者简介
E. Vasiliev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
I. Morozov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
N. Volkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
S. Savilov
Lomonosov Moscow State University
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
O. Morozova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
N. Butkovskaya
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow
P. Khomyakova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Mendeleev University of Chemical Technology of Russia
Email: vasiliev@chph.ras.ru
俄罗斯联邦, Moscow; Moscow
参考
- D. J. Smith, D. W. Setser, K. C. Kim, and D. J. Bogan, J. Phys. Chem. 81, 898 (1977). https://doi.org/10.1021/j100524a019
- J. Ebrecht, W. Hack, and H. G. Wagner, Ber. Bunsenges. Phys. Chem. 93, 619 (1989). https://doi.org/10.1002/bbpc.19890930520
- F. Markert and P. Pagsberg, Chem. Phys. Lett. 209, 445 (1993). https://doi.org/10.1016/0009-2614(93)80115-6
- E. S. Vasiliev, N. D. Volkov, G. V. Karpov, et al., Russ. J. Phys. Chem. A 94, 2004 (2020). https://doi.org/10.1134/S0036024420100295
- E. S. Vasiliev, N. D. Volkov, G. V. Karpov, et al., Russ. J. Phys. Chem. B 15, 789 (2021); https://doi.org/10.1134/S1990793121050213
- S. O. Adamson, D. D. Kharlampidi, A. S. Shtyrkova, et al., Atoms 11, 132 (2023). https://doi.org/10.3390/atoms11100132
- R. Atkinson, D. L. Baulch, R. A. Cox, et al., Atmos. Chem. Phys. 6, 3625 (2006). https://doi.org/10.5194/acp-6-3625-2006
- E. S. Vasiliev, G. V. Karpov, D. K. Shartava, et al., Russ. J. Phys. Chem. B 16, 388 (2022). https://doi.org/10.1134/S1990793122030113
- I. I. Morozov, E. S. Vasiliev, N. I. Butkovskaya, et al., Russ. J. Phys. Chem. B 17, 1091 (2023). https://doi.org/10.1134/S1990793123050251
- R. Pearson, J. Cowles, G. Hermann, D. Gregg, and J. Creighton, IEEE J. Quantum Electron. 9, 879 (1973). https://doi.org/10.1109/JQE.1973.1077761
- R. G. Manning, E. R. Grant, J. C. Merrill, N. J. Parks, and J. W. Root, Int. J. Chem. Kinet. 7, 39 (1975). https://doi.org/10.1002/kin.550070106
- NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/
- P. Heinemann-Fiedler, K. Hoyermann, and G. Rohde, Ber. Bunsenges. Phys. Chem. 94, 1400 (1990). https://doi.org/10.1002/bbpc.199000042
- E. S. Vasiliev, I. I. Morozov, and G. V. Karpov, Int. J. Chem. Kinet. 51, 909 (2019). https://doi.org/10.1002/kin.21319
- R. Atkinson, D. L. Baulch, R. A. Cox, et al., Atmos. Chem. Phys. 7, 981 (2007). https://doi.org/10.5194/acp-7-981-2007
- E. S. Vasiliev, I. I. Morozov, W. Hack, K.-H. Hoyermann, and M. Hold, Kinet. Catal. 47, 834 (2006). https://doi.org/10.1134/S0023158406060048
- S. O. Adamson, D. D. Kharlampidi, A. S. Shtyrkova, et al., Russ. J. Phys. Chem. B 18, 627 (2024). https://doi.org/10.1134/S1990793124700192
- I. I. Morozov, E. S. Vasiliev, N. D. Volkov, et al., Russ. J. Phys. Chem. B 16, 877 (2022). https://doi.org/10.1134/S1990793122050220
- Il. S. Golyak, D. R. Anfimov, I. B. Vintaykin, et al., Russ. J. Phys. Chem. B 17, 320 (2023). https://doi.org/10.1134/S1990793123020264
补充文件
