Inglet oxygen generaion via silver nanoparticles UV-photoexcitation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The NIR-luminescence of suspension of silver nanoparticles stabilized in distilled water has been investigated by photoexcitation of surface plasmon resonance (SPR). The observed short-living luminescence with the spectral maximum at 1300 nm is attributed to the singlet oxugen molecules luminescence. The singlet oxygen generation is assumed to pass in two stages as a result of three-photon process. First the one-photon SPR excitation of silver nanoparticle is occurred and leads to superoxide oxygen generation on the nanoparticle surface. Next the superoxide anion absorbs two more photons of the same laser pulse resulting in electron photodetachment with singlet oxygen formation. During a long period of UV-irradiation the studying suspension ceases to be photostable and sedimentation occurs. The sedimentation may be related to disturbance of nanoparticles steric stability resulting in more efficient superoxide anion adsorption on nanoparticles surface with silver oxide formation.

Full Text

Restricted Access

About the authors

K. S. Ershov

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences

Email: pyryaeva@kinetics.nsc.ru
Russian Federation, Novosibirsk

S. V. Valiulin

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Pedagogical University

Email: pyryaeva@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

A. P. Pyryaeva

Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: pyryaeva@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

References

  1. Zhang Y.J. // Plasmonics. 2011. V. 6. P. 393.
  2. Willets K.A., Duyne R.P. // Annu. Rev. Phys. Chem. 2007. V. 58. P. 267.
  3. Vankayala R., Kuo C.-L., Sagadevan A. et al. // J. Mater. Chem. B. 2013. V. 1. P. 4379.
  4. Huang Y.-F., Zhang M., Zhao J.-M. et al. // Angewandte Chemie. 2014. V. 126. P. 2385.
  5. Zhang W., Li Y., Niu J. et al. // Langmuir. 2013. V. 29. P. 4647.
  6. Rogovina S.Z., Prut E.V., Solov’eva A.B. et al. // Russ. J. Phys. Chem B. 2013. V. 7. I. 4. P. 490.
  7. Vankayala R., Sagadevan A., Vijayaraghavan P. et al. // Angewandte Chemie. 2011. V. 123. P. 10828.
  8. Mogensen K.B.,Kneipp K. // J. Phys. Chem. C. 2014. V. 118. P. 28075.
  9. Zapadinskii B.I., Kotova A.V., Matveeva I.A. et al. // Russ. J. Phys. Chem B. 2010. V. 4. I. 5. P. 864.
  10. Demyanenko A.V., Bogomolov A.S., Dozmorov N.V. et al. // J. Phys. Chem. C. 2019. V. 123. P. 2175.
  11. Nosaka Y., Daimon T., Nosaka A.Y. et al. // Physical Chemistry Chemical Physics. 2004. V. 6. P. 2917.
  12. Pasparakis G., // Small. 2013. V. 9. P. 4130.
  13. Goldort V.G., Demyanenko A.V., Bogomolov A.S. et al. // Inst. Exp. Tech. 2019. V. 2. P. 252.
  14. Trushina A.P., Goldort V.G., Kochubei S.A. et al. // Chemical Physics Letters. 2010. V. 485. P. 11.
  15. Bagrov I.V., Kiselev V.M., Kislyakov I.M. et al. // Optics and Spectroscopy. 2015. V. 118. P. 417.
  16. Bregnhøj M., Westberg M., Jensen F. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 22946.
  17. Shiller K., Muller F.W., // Polymer International. 1991. V. 25. P. 19.
  18. Ryu A., Naru E., Arakane K. et al. // Chem. Pharm. Bull. 1997. V. 45. P. 1243.
  19. Pettenkofer C., Pockrand I.,Otto A., // Surface Science. 1983. V. 135. P. 52.
  20. Louie S.M., Gorham J.M., Tan J. et al. // Environ. Sci.: Nano. 2017. V. 4. P. 1866.
  21. Kowalonek J., Kaczmarek H., // European Polymer Journal. 2010. V. 46. P. 345.
  22. Rebrova G.A., Vasilevskii V.K., Rebrov L.B. et al. // Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2007. V. 53. P. 442. Russian language.
  23. Burmistrov V.A., Bogdanchikova N.E., Gyusan A.O. et al. // Siberian scientific medical journal. 2021. V. 41. I. 5. P. 4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. a - Typical TEM image; and b - a histogram of the size distribution of silver nanoparticles contained in the Argovit suspension obtained from TEM images. Solid line—approximation by function (1) with d0 = 10 nm and σg = 1.65.

Download (250KB)
3. Fig. 2. a — Absorption spectra of pure PVP, pure HA and a suspension of the drug “Argovit” at different concentrations of silver nanoparticles; b - dependence of the absorption of the Argovit drug suspension at a wavelength of 355 nm on the concentration of silver nanoparticles.

Download (154KB)
4. Fig. 3. a — Luminescence spectra recorded as a result of UV photoexcitation of a suspension of the drug “Argovit” (5 mg/ml, 25 mJ, averaging over 16 spectra), PVP (5 mg/ml, 30 mJ, averaging over 4 spectra), hydrolyzate collagen (HA, 100 mg/ml, 30 mJ, averaging over 8 spectra) and distilled water (30 mJ, averaging over 4 spectra); b - luminescence signal recorded in a suspension of the drug “Argovit” at a wavelength of 1300 nm (exciting radiation energy - 25 mJ, averaging over 8192 pulses); The gray line shows the approximation of the luminescence signal corresponding to the second-order quenching kinetics [14].

Download (153KB)
5. Fig. 4. Dependence of the integral of the luminescence signal A, recorded at a wavelength of 1300 nm during photoexcitation of a suspension of the Argovit drug, on the energy of the exciting radiation in double logarithmic coordinates.

Download (60KB)
6. Fig. 5. a — Absorption spectrum of a suspension of the drug “Argovit” before UV irradiation (1) and after UV irradiation for 2 hours (2) (initial concentration of silver nanoparticles - 0.1 mg/ml); b — time dependence of the integral of the luminescence signal in the spectral range from 1200 to 1400 nm upon photoexcitation of the suspension at a wavelength of 355 nm (each signal was averaged over 128 pulses, the energy of the exciting radiation was 30 mJ).

Download (136KB)

Note

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Copyright (c) 2024 Russian Academy of Sciences