Photochemistry of IrCl63– complex in aqueous solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The photochemistry of the [IrIIICl6]3- complex in aqueous solutions was studied by the methods of stationary and laser flash photolysis. As the result of a light quantum absorption, parallel processes of photoaquatation and photoionization occur. The aquated electron eaq, which is formed with a quantum yield of 0.12 (excitation at 266 nm), is predominantly decayed in reactions with the initial complex and dissolved oxygen. The rate constant of eaq capture by the [IrIIICl6]3- complex was measured. The main final photolysis products are Ir(III) complexes with different compositions of ligands, as well as several percents of Ir(IV) complexes. The formation of final products occurs in the time range from milliseconds to seconds.

Full Text

Restricted Access

About the authors

G. I. Zhdankin

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: glebov@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

V. P. Grivin

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Email: glebov@kinetics.nsc.ru
Russian Federation, Novosibirsk

V. F. Plyusnin

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: glebov@kinetics.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

Yu. P. Tsentalovich

International Tomography Center, Siberian Branch of the Russian Academy of Sciences

Email: glebov@kinetics.nsc.ru
Russian Federation, Novosibirsk

E. M. Glebov

Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: glebov@kinetics.nsc.ru
Russian Federation, Novosibirsk

References

  1. Zhang X., Wu F., Deng N. et al. // React. Kinet. Catal. Lett. 2008. V. 94. № 2. P. 207.
  2. Tyutereva Yu.E., Grivin V.P., Xu J et al. // Environ. Sci. Poll. Res. 2021. V. 47. P. 67891.
  3. Wu F., Deng N., Glebov E.M. et al. // Russ. Chem. Bull., Int. Edit. 2007. V. 56. № 5. P. 900 (Engl. Transl.).
  4. Zhang X., Gong Y., Wu F. et al. Russ. Chem. Bull., Int. Edit. 2009. V. 58. № 9. P. 1828 (Engl. Transl.).
  5. Bednarski P.J., Mackay F.S., Sadler P.J. // Anti-Cancer Agents Med. Chem. 2007. V. 7. № 1. P. 75.
  6. Gurruchaga-Pereda J., Martínez A., Terenzi A., Salassa L. // Inorg. Chim. Acta. 2019. V. 495. Article 118981.
  7. Alfassi Z.B., Shuler R.H. // J. Phys. Chem. 1985. V. 89. № 15. P. 3359.
  8. Neta P., Huie R.E., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. № 3. P. 1027.
  9. Shushakov A.A., Pozdnyakov I.P., Grivin V.P. et al. Dalton Trans. 2017. V. 46. № 29. P. 9440.
  10. Zhdankin G.I., Grivin V.P., Plyusnin V.F. et al. // Mendeleev Commun. 2022. Accepted.
  11. Butler J.S., Woods J.A., Farrer N.J. et al. // J. Am. Chem. Soc. 2012. V. 134. № 40. P. 16508.
  12. Ram M.S., Stanbury D.M. // J. Phys. Chem. 1986. V. 90. № 16. P. 3691.
  13. DeFelippis M.R., Murthy C.P., Faraggi M., Klapper M.H. // Biochemistry. 1989. V. 28. № 11. P. 4847.
  14. Jorgensen C.K. // Mol. Phys. 1959. V. 2. № 3. P. 309.
  15. Glebov E.M., Pozdnyakov I.P., Plyusnin V.F., Khmelinskii I. // J. Photochem. Photobiol. C: Photochem. Rev. 2015. V. 24. P. 1.
  16. Glebov E.M. // Russ. Chem. Bull. Int. Edit. 2022. V. 71. № 5. P. 858 (Engl. Transl.).
  17. Eidem P.K., Maverick A.W., Gray, H.B. // Inorg. Chim. Acta. 1981. V. 50. № 1. P. 59.
  18. Waltz W.L., Adamson A.W. // J. Phys. Chem. 1969. V. 73. № 12. P. 4250.
  19. Pozdnyakov I.P., Plyusnin V.F., Grivin V.P. et al. // J. Photochem. Photobiol. A: Chem. 2006. V. 182. № 1. P. 75.
  20. Tsentalovich Y.P., Sherin P.S., Kopylova L.V. et al. // IOVS (Investig. Ophthalmol. Vis. Sci.). 2011. V. 52. № 10. P. 7687.
  21. Savina E.D., Tsentalovich Yu.P., Sherin P.S. // Free Rad. Biol. Med. 2020. V. 152. P. 482.
  22. Poulsen I.A., Garner C.S. // J. Am. Chem. Soc. 1962. V. 84. № 10. P. 2032.
  23. Hare P.M., Price E.A., Bartels D.M. // J. Phys. Chem. A. 2008. V. 112. № 30. P. 6800.
  24. Glebov E.M., Plyusnin V.F., Tkachenko N.V., Lemmetyinen H. // Chem. Phys. 2000. V. 257. № 1. P. 79.
  25. Buxton G.V., Greenstock C.L., Philip Helman W., Ross A.B. // J. Phys. Chem. Ref. Data. 1988. V. 17. № 2. P. 513.
  26. Anbar M., Hart E.J. // Adv. Chem. Ser. 1968. V. 81. P. 79.
  27. Broszkiewicz R.K. // J. Chem. Soc. Dalton Trans. 1973. № 17. P. 1799.
  28. Crawford Ch.L., Gholami M.R., Roberts S.L., Hanrahan R.J. // Radiat. Phys. Chem. 1992. V. 40. № 3. P. 205.
  29. Treinin A., Hayon E. // J. Am. Chem. Soc. 1975. V. 97. № 7. P. 1716.
  30. Kovalenko N.L., Rogin N.D., Malchikov G.D. // Zhurn. Neorg. Khim. (Russian Journal of Inorganic Chemistry) // 1982. V. 27. № 4. P. 986 (in Russian).
  31. El-Awady A.A., Bounsall E.J., Garner, C.S. // Inorg. Chem. 1967. V. 6. № 1. P. 79.
  32. Pelizetti E., Mentasti E., Pramauro E. // J. Chem. Soc. Perkin Trans. 1978. V. 2. № 7. P. 620.
  33. Bus’ko E.A., Burkov K.A., Kalinin S.K. // Zhurn. Anal. Khim. (Russian Journal of Analytical Chemistry. 1974. V. 29. № 2. P. 340 (in Russian).
  34. Glebov E.M., Pozdnyakov I.P., Grivin V.P. et al. // Photochem. Photobiol. Sci. 2011. V. 10. № 3. P. 425.
  35. Pankratov D.A., Komozin P.N., Kiselev Yu.M. // Russ. J. Inorg. Chem. 2011. V. 56. № 11. P. 1794 (Engl. Transl.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. UV spectrum of the [IrIIICl6]3– complex in aqueous solution.

Download (94KB)
3. Fig. 2. Results of an experiment on laser pulsed photolysis (266 nm, 5.3 mJ/pulse) of the [IrIIICl6]3– complex in an aqueous solution (1.0 10–3 M, cuvette with an optical path length of 1 cm, natural oxygen content): a - examples kinetic curves, b - spectrum of intermediate absorption (points connected by a solid line) in the stationary section of the kinetic curves (delay time between exciting and probing pulses >3 μs). The dashed line is the shape of the spectrum of the [IrIVCl6]2– complex.

Download (139KB)
4. Fig. 3. Determination of the rate constant of the reaction eaq– + [IrIIICl6]3– in an experiment on laser pulsed photolysis: a - examples of kinetic curves for the death of an aquated electron (initial sections of the curves in Fig. 2a) - experimental kinetic curves and their approximation by exponential functions (smooth curves) ; b - dependence of the observed constant (first order) of the rate of loss of intermediate absorption on the concentration of [IrIIICl6]3– - experimental points and linear approximation.

Download (85KB)
5. Fig. 4. Results of an experiment on laser pulse photolysis (266 nm) of the [IrIIICl6]3 complex in an aqueous solution (1.6 × 10–3 M, cuvette with l = 1 cm, solution purged with argon). Dependence of the initial absorption D0 (490 nm) of the resulting [IrIVCl6]2– complex on the laser pulse energy.

Download (69KB)
6. Fig. 5. Changes in ESP during steady-state photolysis (254 nm) of the [IrIIICl6]3– complex in an aqueous solution, concentration 1.1 × 10–3 M, cuvette l = 1 cm: a — solution purged with argon, curves 1 — 4 correspond to 0 , 15, 90, 180 min of irradiation; b — air-saturated solution, curves 1–5 correspond to irradiation times of 0, 11, 21, 31, 41 min. The spectrum of the [IrIVCl6]2– complex is presented in both panels by thick (red) curves corresponding to the oxidation of 10% of the initial complex.

Download (193KB)
7. Fig. 6. Results of the experiment on stationary photolysis (254 nm). Change in ESP during irradiation of the [IrIIICl6]3– complex in a 2.5 M aqueous solution of HClO4 with a concentration of 8.9 × 10-4 M (cuvette with l = 1 cm, air-saturated solution). a — Change in ESP during irradiation, curves 1–11 correspond to irradiation times of 0, 10, 20, 30, 45, 60, 120, 180, 240, 300, 360 min; b - dynamics of changes in absorption at wavelengths of 308 and 487 nm.

Download (198KB)

Note

Х Международная конференция им. В.В. Воеводского “Физика и химия элементарных химических про­цессов” (сентябрь 2022, Новосибирск, Россия).


Copyright (c) 2024 Russian Academy of Sciences