Evaluation of the Spatial Heterogeneity of the Pacific Oyster Magallana gigas (Thunberg, 1793) Cultivation Conditions Using the FARM Marifarm Management Model in Voevoda Bay

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the present study, using the Farm Aquaculture Resource Management (FARM), farm aquaculture resource management model, we calculated the potential productivity of plantations of the oyster Magallana gigas (Thunberg, 1793) (Bivalvia: Ostreidae) in Voevoda Bay (Sea of Japan, Peter the Great Bay, Russkiy Island). When calculating the productivity of cage and bottom plantations of M. gigas, we used the previously obtained results of numerical modeling of bay’s dynamics of hydrological parameters using the open software Delft3D-Flow, taking into account the inflow of fresh water into the bay in 1990–2019. To demonstrate the heterogeneity of growing conditions for M. gigas, three sites 100 × 100 m in size were selected, located in Kruglaya and Melkovodnaya Bays, as well as in the central part of Voevoda Bay. For each plot, modeling of 28 growing periods, lasting 22 months each was performed. The maximum values of oyster yield for the se-cond year of cultivation, expressed in tons of total wet weight, were selected, and distribution histograms for each area were presented. It was shown that, according to hydrological and biological indicators, the growing conditions even in small Voevoda bay are heterogeneous. It has been established that the variability in the productivity of M. gigas is associated mainly with the extreme uneven redistribution of primary production in Voevoda bay under the influence of hydrodynamic factors.

Sobre autores

S. Katrasov

The Pacific Geographical Institute of the Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: biolm@imb.dvo.ru
Russia, 690041, Vladivostok

A. Bugayets

The Pacific Geographical Institute of the Far Eastern Branch, Russian Academy of Sciences

Email: biolm@imb.dvo.ru
Russia, 690041, Vladivostok

V. Zharikov

The Pacific Geographical Institute of the Far Eastern Branch, Russian Academy of Sciences

Email: biolm@imb.dvo.ru
Russia, 690041, Vladivostok

Bibliografia

  1. Барабанщиков Ю.А., Тищенко П.Я., Семкин П.Ю. и др. Сезонные гидролого-гидрохимические исследования бухты Воевода (Амурский залив, Японское море) // Изв. ТИНРО. 2015. Т. 180. С. 161–178.
  2. Бугаец А.Н., Катрасов С.В., Жариков В.В. и др. Вероятностно-статистическая оценка потенциальной продуктивности марикультуры (на примере бухты Воевода, юг Приморского края) // Докл. Рос. акад. наук. Науки о Земле. 2022. Т. 503. № 1. С. 104–107.
  3. Гаврилова Г.С. Приемная емкость аквакультурной зоны залива Петра Великого (Японское море): Автореф. дис. … докт. биол. наук. Владивосток: ТИНРО-Центр. 2012. 37 с.
  4. Гаврилова Г.С., Ким Л.Н. Эффективность культивирования приморского гребешка (Mizuhopecten yessoensis) в Уссурийском заливе (Японское море) // Изв. ТИНРО. 2016. Т. 185. С. 240–250.
  5. Гаврилова Г.С., Кондратьева Е.С. Результаты хозяйственной деятельности и проблемы развития марикультуры залива Посьета (Японское море) в 2000–2015 гг. // Изв. ТИНРО. 2018. Т. 195. С. 229–243.
  6. Гаврилова Г.С., А.В. Кучерявенко. Продуктивность плантаций двустворчатых моллюсков в Приморье. Владивосток: ТИНРО-Центр. 2011. 113 с.
  7. Гайко Л.А. Современные подходы к прогнозированию урожайности гидробионтов в хозяйствах марикультуры с учетом климатических факторов // Науч. тр. Дальрыбвтуза. 2017. Т. 43. № 4. С. 5–11.
  8. Иванов Г.И. Почвообразование на юге Дальнего Востока. М.: Наука. 1976. 200 с.
  9. Катрасов С.В., Бугаец А.Н., Жариков В.В. и др. Определение районов размещения плантаций марикультуры на основе результатов гидродинамического моделирования // Океанология. 2021а. Т. 61. № 3. С. 433–443.
  10. Катрасов С.В., Бугаец А.Н., Жариков В.В. и др. Оценка продуктивности плантаций двустворчатых моллюсков на основе результатов моделирования // Океанология. 2021б. Т. 61. № 5. С. 759–768.
  11. Кучерявенко А.В., Жук А.П. Инструкция по технологии культивирования тихоокеанской устрицы. Владивосток: ТИНРО-Центр. 2011. 27 с.
  12. Bricker S.B., Ferreira J.G., Simas T. An integrated metho-dology for assessment of estuarine trophic status // Ecol. Model. 2003. V. 169. № 1. P. 39–60.
  13. Brigolin D., Dal Maschio G., Rampazzo F. et al. An individual-based population dynamic model for estimating biomass yield and nutrient fluxes through an off-shore mussel (Mytilus galloprovincialis) farm // Estuar. Coast. Shelf Sci. 2009. V. 82. № 3. P. 365–376.
  14. Ferreira J.G., Hawkins A.J.S., Bricker S.B. Management of productivity, environmental effects and profitability of shellfish aquaculture – the Farm Aquaculture Resource Management (FARM) model // Aquaculture. 2007. V. 264. P. 160–174.
  15. Ferreira J.G., Hawkins A.J.S., Monteiro P. et al. Integrated Assessment of Ecosystem-scale Carrying Capacity in Shellfish Growing Areas // Aquaculture. 2008. V. 275. № 1–4. P. 138–151.
  16. Hawkins A.J.S., Bayne B.L. Seasonal variation in the relative utilization of carbon and nitrogen by the mussel Mytilus edulis: budgets, conversion efficiencies and maintenance requirements // Mar. Ecol. Prog. Ser. 1985. V. 25. P. 181–188.
  17. Hawkins A.J.S., Bayne B.L. Physiological processes, and the regulation of production // The Mussel Mytilus: Ecology, Physiology, Genetics and Culture. Amsterdam: Elsevier. 1992. 590 p.
  18. Hawkins A.J.S., Duarte P., Fang J.G. et al. A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China // J. Exp. Mar. Biol. Ecol. 2002. V. 281. P. 13–40.
  19. Hawkins A.J.S., Pascoe P.L., Parry H. A generic model structure for the dynamic simulation of feeding, meta-bolism and growth in suspension-feeding bivalve shellfish (ShellSIM): calibrated and validated for both Mytilus edulis and Crassostrea gigas cultured at contrasting sites throughout Europe // J. Exp. Mar. Biol. Ecol. 2002. V. 281. № 1–2. P. 13–40.
  20. McCausland W.D., Mente E., Pierce, G.J., Theodossiou I. A simulation model of sustainability of coastal communities: aquaculture, fishing, environment and labour markets // Ecol. Model. 2006. V. 193. № 3–4. P. 271–294.
  21. McKindsey C.W., Thetmeyer H., Landry T. et al. Review of recent carrying capacity models for bivalve culture and recommendations for research and management // Aquaculture. 2006. V. 261. № 2. P. 451–462.
  22. Nobre A.M., Ferreira J.G., Newton A. et al. Management of coastal eutrophication: integration of field data, ecosystem-scale simulations and screening models // J. Mar. Syst. 2005. V. 56. № 3/4. P. 375–390.
  23. Nunes J.P., Ferreira J.G., Gazeau F. et al. A model for sustainable management of shellfish polyculture in coastal bays // Aquaculture. 2003. V. 219. № 1–4. P. 257–277.
  24. Rueda J.L., Smaal A.C., Scholten H. A growth model of the cockle (Cerastodermaedule L.) tested in the Oosterschelde estuary (The Netherlands) // J. Sea Res. 2005. V. 54. P. 276–298.
  25. Solidoro C., Pastres R., MelakuCanu D. et al. Modelling the growth of Tapes phillipinarum in Northern Adriatic lagoons // Mar. Ecol. Prog. Ser. 2000. V. 199. P. 137–148.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (335KB)
3.

Baixar (297KB)
4.

Baixar (48KB)
5.

Baixar (340KB)

Declaração de direitos autorais © С.В. Катрасов, А.Н. Бугаец, В.В. Жариков, 2023