Antiviral Potential of Marine Bacteria Polysaccharides
- 作者: Kuznetsova T.A.1, Besednova N.N.1, Zaporozhets T.S.1, Kokoulin M.S.2, Khotimchenko Y.S.3,4, Shchelkanov M.Y.1,3,4
-
隶属关系:
- Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences
- Far Eastern Federal University
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
- 期: 卷 50, 编号 3 (2024)
- 页面: 179-190
- 栏目: ОБЗОР
- ##submission.datePublished##: 15.06.2024
- URL: https://cardiosomatics.orscience.ru/0134-3475/article/view/670347
- DOI: https://doi.org/10.31857/S0134347524030012
- ID: 670347
如何引用文章
详细
Intensive population interactions between components of plankton and virioplankton of the World Ocean have formed ancient and, at the same time, versatile mechanisms for protecting marine bacteria and archaea from the effects of ocean viruses on them. One of such mechanisms is exopolysaccharides, which are secreted by marine prokaryotes to interact with surface proteins of viral particles and prevent the binding of viral peplomers to receptors of potential target cells. Therefore, antiviral drugs with a wide spectrum of actions, exhibiting also the ability to modulate intercellular interactions, are found in large numbers among exopolysaccharides of marine bacteria. The review analyzes the modern views on exopolysaccharides of marine bacteria, their antiviral potential, and antioxidant and immunomodulatory activity. A brief description of the structural, physical, and chemical properties of such compounds is given and the main mechanisms of antiviral activity of the best-known representatives of this class of organic polymers are disclosed. Exopolysaccharides of marine bacteria are shown to be a promising and extremely rich source of antiviral medicinal substances.
全文:

作者简介
T. Kuznetsova
Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)
编辑信件的主要联系方式.
Email: takuznets@mail.ru
ORCID iD: 0000-0002-4315-6959
俄罗斯联邦, Vladivostok
N. Besednova
Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)
Email: takuznets@mail.ru
俄罗斯联邦, Vladivostok
T. Zaporozhets
Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)
Email: takuznets@mail.ru
ORCID iD: 0000-0002-8879-8496
俄罗斯联邦, Vladivostok
M. Kokoulin
Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: takuznets@mail.ru
ORCID iD: 0000-0003-2245-6802
俄罗斯联邦, Vladivostok
Yu. Khotimchenko
Far Eastern Federal University; Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Email: takuznets@mail.ru
ORCID iD: 0000-0002-6979-1934
俄罗斯联邦, Vladivostok; Vladivostok
M. Shchelkanov
Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor); Far Eastern Federal University; Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences
Email: takuznets@mail.ru
ORCID iD: 0000-0001-8610-7623
俄罗斯联邦, Vladivostok; Vladivostok; Vladivostok
参考
- Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Оболочечные вирусы – патогенетическая мишень лектинов цианобактерий // Антибиотики и химиотерапия. 2022. Т. 67. № 5–6. С. 39–60.
- Бреслав Н.В., Шевченко Е.С., Абрамов Д.Д. и др. Эффективность применения антинейраминидазных химиопрепаратов во время пандемии гриппа и в постпандемический период // Вопр. вирусологии. 2013. Т. 58. № 1. С. 28–32.
- Колобухина Л.В., Меркулова Л.Н., Малышев Н.А. и др. Стратегия ранней противовирусной терапии при гриппе как профилактика тяжелых осложнений // Пульмонология. 2010. № 1. С. 9–14.
- Колобухина Л.В., Меркулова Л.Н., Щелканов М.Ю. и др. Пандемический грипп в России: отличительные особенности клинического течения и отсутствие ранней этиотропной терапии как фактор риска развития тяжелых форм заболевания // Терапевтический архив. 2011. Т. 83. № 9. С. 48–53.
- Крылова Н.В., Смолина Т.П., Берлизова М.В., Леонова Г.Н. Иммунокорригирующая и противовирусная активность полисахарида из морских бактерий в отношении вируса клещевого энцефалита // Антибиотики и химиотерапия. 2019. Вып. 64. № 11–12. С. 16–24.
- Кузнецова Т.А., Запорожец Т.С., Ермакова С.П. и др. Адъюванты на основе полисахаридов из гидробионтов Тихого океана. Владивосток: Дальнаука. 2023.
- Лямин А.В., Терещенко В.С., Жестков А.В., Исматуллин Д.Д. Видовое разнообразие представителей рода Streptomyces, выделенных из клинического материала // Инфекция и иммунитет. 2022. Вып. 12. № 2. С. 386–390. doi: 10.15789/2220-7619-SDA-1838
- Папуашвили М.Н., Щелканов М.Ю. Эффективность комбинированной терапии герпесвирусных инфекций у ВИЧ-инфицированных пациентов // Вопр. вирусологии. 2004. Т. 49. № 2. С. 25–29.
- Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА. 2013.
- Щелканов М.Ю., Колобухина Л.В., Бургасова О.А. и др. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020. Т. 10. № 3. С. 421–445.
- Щелканов М.Ю., Львов Д.Н., Федякина И.Т. и др. Динамика распространения пандемического гриппа А/H1N1 swl на Дальнем Востоке в 2009 г. // Вопр. вирусологии. 2010. Т. 55. № 3. С. 10–15.
- Abu-Ghosh S.A., Dubinsky Z., Verdelho V. Unconventional high-value products from microalgae: A review // Bioresour. Technol. 2021. V. 329. Art. ID 124895. doi: 10.1016/biortech.2021.124895
- Almutairi M.H., Helal M.M.I. Exopolysaccharide production from isolated Enterobacter sp. strain ACD2 from the northwest of Saudi Arabia // J. King Saud Univ. Sci. 2021. V. 33. № 2. Art. ID 101318. doi: 10.1016/j.jksus.2020.101318
- Al-Nahas M.O., Darwish M.M., Ali A.E., Amin M.A. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. // Afr. J. Microbiol. Res. 2011. V. 5. № 22. P. 3823–3831.
- doi: 10.5897/AJMR11.757
- Alshawwa S.Z., Alshallash K.S., Ghareeb A. et al. Assessment of pharmacological potential of novel exopolysaccharide isolated from marine Kocuria sp. strain AG5: Broad-spectrum biological investigations // Life. 2022. V. 12. № 9. Art. ID 1387. doi: 10.3390/life12091387
- Andreu S., Kobbe C., Delgado P., Ripa I. Dextran sulfate from Leuconostoc mesenteroides B512F exerts potent antiviral activity against SARS-CoV-2 in vitro and in vivo // Front Microbiol. 2023. V. 14. Art. ID 1185504. doi: 10.3389/fmicb.2023.1185504
- Anwar A.A., Nowruzi B. Bioactive peptides of Spirulina: A review // Microb. Bioact. 2021. V. 4. № 1. Р. 134–142. doi: 10.25163/microbbioacts.412117BO719110521
- Appel K., Munoz E., Navarrete C. et al. Immunomodulatory and inhibitory effect of Immulina, and Immunloges in the Ig-E mediated activation of RBL-2H3 cells. A new role in allergic inflammatory responses // Plants. 2018. V. 7. № 1. Art. ID 13. doi: 10.3390/plants7010013
- Arena A., Maugeri T.L., Pavone B. et al. Antiviral and immunoregulatory effect5 of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis // Int. Immunopharmacol. 2006. V. 6. № 1. Р. 8–13. doi: 10.1016/j.intimp.2005.07.004
- Babich O., Sukhikh S., Larina V. et al. Algae: study of edible and biologically active fractions, their properties and applications // Plants. 2022. V. 11. № 16. Art. ID 780. doi: 10.3390/plants11060780.
- Barcelos M.C.S., Vespermann K.A.C., Pelissari F.M., Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides // Crit Rev Food Sci Nutr. 2020. V. 60. Р. 1475–1495. doi: 10.1080/10408398.2019.1575791
- Bello-Morales R., Andreu S., Ruiz-Carpio V. et al. Extracellular polymeric substances: still promising antivirals // Viruses. 2022. V. 14. № 6. Art. ID 1337. doi: 10.3390/v14061337
- Bergmann S.M., Reichert M., Hwang J. et al. The application of exopolysaccharides (EPS) can prevent viral disease of fish // Bull. Eur. Assoc. Fish Pathol. 2022. V. 42. № 1. Р. 15–27. doi: 10.48045/001c.38087
- Besednova N.N., Andryukov B.G., Kuznetsova T.A. et al. Antiviral effects and mechanisms of action of water extracts and polysaccharides of microalgae and cyanobacteria // J. Pharm. Nutr. Sci. 2022. V. 12. P. 54–73. doi: 10.29169/1927-5951.2022.12.05
- Besednova N.N., Andryukov B.G., Zaporozhets T.S. et al. Antiviral effects of polyphenols from marine algae // Biomedicines. 2021. V. 9. № 2. Art. ID 200. doi: 10.3390/biomedicines9020200
- Bianculli R.H., Mase J.D., Schulz M.D. Antiviral polymers: past approaches and future possibilities // Macromolecules. 2020. V. 53. Р. 9158–9186. doi: 10.1021/acs.macromol.0c01273
- Breitbart M. Marine viruses: truth or dare // Annu. Rev. Mar. Sci. 2012. V. 4. P. 425–448. doi: 10.1146/annurev-marine-120709-142805
- Casillo A., Lanzetta R., Parrilli M., Corsaro M.M. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications // Mar. Drugs. 2018. V. 16. № 2. Art. ID 69. doi: 10.3390/md16020069
- Chen Y.-H., Chang G.-K., Kuo S.-M. et al. Well tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality // Sci. Rep. 2016. V. 6. Art. ID 24253. doi: 10.1038/srep2453
- Chen Y.-H., Liao Y.-C., Huang J.-Y. et al. Hot water extract of Arthrospira maxima (AHWE) has broad-spectrum antiviral activity against RNA virus including coronavirus SARS-CoV-2 and the antivirus spray application // Preprint of Far East Bio-Tec Co., Ltd. Taipei, Taiwan. 2021.
- doi: 10.1101/2021.06.06.446935
- Cingi J., Conk-Dalay S., Cakli H., Bal C. The effect of Spirulina on allergic rhinitis // Eur. Arch. Oto-Rhino-Laringol. 2008. V. 265. № 10. Р. 1219–1223. doi: 10.1007/s00405-008-0642-8
- El Awady M.E., Eldin M.A.N., Ibrahim H.M. et al. In vitro evaluation of antioxidant, anticancer, and antiviral activities of exopolysaccharide from Streptomyces hirsutus NRC2018 // J. Appl. Pharm. Sci. 2019. V. 9. № 11. Р. 10–18. doi: 10.7324/JAPS.2019.91102
- García A., Fernandez-Sandoval M.T., Morales-Guzman D. et al. Advances in exopolysaccharide production from marine bacteria // J. Chem. Technol. Biotechnol. 2022. V. 97. № 10. Р. 2694–2705. doi: 10.1002/jctb.7156
- Geraghty R.J., Aliota M.T., Bonnac L.F. Broad-spectrum antiviral strategies and nucleoside analogues // Viruses. 2021. V. 13. Art. ID 4. P. 667. doi: 10.3390/v13040667
- Gugliandolo C., Spano A., Lentini V. et al. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin // J. Appl. Microbiol. 2014. V. 6. № 4. Р. 1028–1034. doi: 10.1111/jam.12422
- Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy // Appl. Environ. Microbiol. 1991. V. 57. № 9. P. 2731–2734. doi: 10.1128/aem.57.9.2731-2734.1991
- Hassan S.W.M., Hassan A.H.I. Production, characterization and valuable applications of exopolysaccharides from marine Bacillus subtilis SH1 // Pol. J. Microbiol. 2017. V. 66. № 4. Р. 449–461. doi: 10.5604/01.3001.0010.7001
- Hirahashi T., Matsumoto M., Hazeki K. et al. Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis // Int. Immunopharmacol. 2002. V. 2. № 4. Р. 423–434. doi: 10.1016/s1567-5769(01)00166-7
- Karamov E.V., Yaroslavtseva N.G., Shchelkanov M.Yu. et al. Antigenic and genetic relations between different HIV-1 subtypes in Russia // Immunol. Infect. Dis. 1996. V. 6. P. 15–24.
- https://api.semanticscholar.org/CorpusID:91155126
- Karthika T., Joseph J., Akshay V.R. et al. SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling // Cells. 2021. V. 10. № 7. Art. ID 1814. doi: 10.3390/cells10071814
- Khavari F., Saidijam M., Taheri M., Nouri F. Microalgae: therapeutic potentials and applications // Mol. Biol. Rep. 2021. V. 48(5). Р. 4757–4765. doi: 10.1007/s11033-021-06422-w
- Khotimchenko Yu.S., Shchelkanov M.Yu. Viruses of the Ocean: On the Shores of the Aqua Incognita. Horizons of the Taxonomic Diversity // R. J. Mar. Biol. 2024. V. 50. № 1. P. 3–30.
- Kochhar N., Kavya I.K., Shrivastava S. et al. Perspectives on the microorganism of extreme environments and their applications // Curr. Res. Microb. Sci. 2022. V. 3. Art. ID 100134. doi: 10.1016/j.crmicr.2022.100134
- Kokoulin M.S., Romanenko L.A., Kuzmich A.S., Chernikov O. Structure of the cell-wall-associated polysaccharides from the deep-sea marine bacterium Devosia submarina KMM9415T // Mar. Drugs. 2021. V. 19. № 12. Art. ID 665. doi: 10.3390/md19120665
- Laroche C. Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and application // Mar. Drugs. 2022. V. 20. № 5. Art. ID 336. doi: 10.3390/md20050336
- Levasseur W., Perré P., Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification // Biotechnol. Adv. 2020. V. 41. Art. ID 107545. doi: 10.1016/j.biotechadv.2020.107545
- Liu T., Ren Q., Wang S. et al. Chemical modification of polysaccharides: a review of synthetic approaches, biological activity and the structure-activity relationship // Molecules. 2023. V. 28. № 16. Art. ID 6073. doi: 10.3390/molecules28166073
- Merino N., Aronsdon H.S., Bojanova D.P., Feyhl-Buska J. Living at the extremes: extremophiles and the limits of life in a planetary context // Front. Microbiol. 2019. V. 10. Art. ID 780. doi: 10.3389/fmcb.2019.00780
- Mishra N., Gupta E., Walag A.M.P. et al. A review of marine natural product resources with potential bioactivity against SARS-CoV-2 // Trop. J. Nat. l Prod. Res. 2023. V. 7. № 1. Р. 2093–2103. doi: 10.26538/tjnpr/v7i1.2
- Moreira J.B., Vaz B.S., Cardias B.B. et al. Microalgae polysaccharides: an alternative source for food production and sustainable agriculture // Polysaccharides. 2022. V. 3. Р. 441–457. doi: 10.3390/polysaccharides3020027
- Nigam S., Singh R., Bhardwaj S.K. et al. Perspective on the therapeutic applications of algal polysaccharides // J. Polym. Environ. 2022. V. 30. Р. 785–809. doi: 10.1007/s10924-021-02231-1
- Panchal R., Prajapati K., Prajapati M. et al. Bacterial exopolysaccharides: types, its biosynthesis and their application in different Fields // Acta Sci. Biotechnol. 2022. V. 3. № 2. Р. 3–11.
- Pendyala B., Patras A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) // Preprint of Department of Agricultural and Environmental Sciences, Tennessee State University. Nashville, USA. 2020. Р. 1–11.
- doi: 10.26434/chemrxiv.12051927.v2
- Petit L., Vernes L., Cadoret J.P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2 // J. Appl. Phycol. 2021. V. 33. № 3. P. 1579–1602. doi: 10.1007/s10811-021-02372-9
- Poli A., Anzelmo G., Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities // Mar. Drugs. 2010. V. 8. № 6. Р. 1779–1802. doi: 10.3390/md8061779
- Qi M., Zheng C., Wu W. et al. Exopolysaccharides from marine microbes: source, structure and application // Mar. Drugs. 2022. V. 20. № 8. Art. ID 512. doi: 10.3390/md20080512
- Ratha S.K., Renuka N., Rawat M. et al. Prospective options of algae derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases // Nutrition. 2021. V. 83. Art. ID 111089. doi: 10.1016/j.nut2020.111089
- Reichert M., Bergmann S., Lindenberger C. et al. Antiviral activity of exsopolysaccharides from Arthrospira platensis against koi herpesvirus // J. Fish Dis. 2017. V. 40. № 10. Р. 1441–1450. doi: 10.1111/jfd.12618
- Riccio G., Ruocco N., Mutalipassi M. et al. Ten-Year research update review: antiviral activities from marine organisms // Biomolecules. 2020. V. 10. № 7. Art. ID 1007. doi: 10.3390/biom10071007
- Rosales-Mendoza I., García-Silva O., González-Ortega O. et al. The potential of algal biotechnology to produce antiviral compounds and biopharmaceuticals // Molecules. 2020. V. 25. Art. ID 4049. doi: 10.3390/molecules25184049
- Saadat Y.R., Khosroushahi A.Y., Gargari B.P. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides // Carbohydr. Polym. 2019. V. 217. Р. 79–89. doi: 10.1016/j.carbpol.2019.04.025
- Salimi F., Farrokh P. Recent advances in the biological activities of microbial exopolysaccharides // World J. Microbiol. Biotechnol. 2023. V. 39. Art. ID 213. doi: 10.1007/s11274-023-03660
- Shyam P.P., Rajkumar P., Ramya V. et al. Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential // Carbohydr. Polym. Technol. Appl. 2021. V. 2. № 25. Art. ID 100070. doi: 10.1016/jcarpta.2021.100070
- Spano A., Arena A. Bacterial exopolysaccharide of shallow marine vent origin as agent in counteracting immune disorders induced by herpes virus // J. Immunoassay Immunochem. 2016. V. 37. № 3. Р. 251–260. doi: 10.1080/15321819.2015.1126602
- Van Erp E.A., van Kampen M.R., van Kasteren P.B., de Wit J. Viral infection of human natural killer cells // Viruses. 2019. V. 11. № 3. Art. ID 243. doi: 10.3390/v11030243
- Vavilin V.A., Shchelkanov M.Yu., Lokshina L.Y. et al. A comparative analysis of a balance between the rates of polymer hydrolysis and acetoclastic methanogenesis during anaerobic digestion of solid waste // Water Sci. Technol. 2002. V. 45. № 10. P. 249–254. doi: 10.2166/wst.2002.0345
- Wang W., Wang Sh.-X., Guan H.-S. The antiviral activities and mechanisms of marine polysaccharides: an overview // Mar. Drugs. 2012. V. 10. № 12. Р. 2795–2816. doi: 10.3390/md10122795
- Zhu D., Adebisi W.A., Ahmad F. et al. Recent development of extremophilic bacteria and their application in biorefinery // Front Bioeng. Biotechnol. 2020. V. 8. Art. ID 483. doi: 10.3389/fbioe.2020.00483
补充文件
