Antiviral Potential of Marine Bacteria Polysaccharides

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Intensive population interactions between components of plankton and virioplankton of the World Ocean have formed ancient and, at the same time, versatile mechanisms for protecting marine bacteria and archaea from the effects of ocean viruses on them. One of such mechanisms is exopolysaccharides, which are secreted by marine prokaryotes to interact with surface proteins of viral particles and prevent the binding of viral peplomers to receptors of potential target cells. Therefore, antiviral drugs with a wide spectrum of actions, exhibiting also the ability to modulate intercellular interactions, are found in large numbers among exopolysaccharides of marine bacteria. The review analyzes the modern views on exopolysaccharides of marine bacteria, their antiviral potential, and antioxidant and immunomodulatory activity. A brief description of the structural, physical, and chemical properties of such compounds is given and the main mechanisms of antiviral activity of the best-known representatives of this class of organic polymers are disclosed. Exopolysaccharides of marine bacteria are shown to be a promising and extremely rich source of antiviral medicinal substances.

Texto integral

Acesso é fechado

Sobre autores

T. Kuznetsova

Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Autor responsável pela correspondência
Email: takuznets@mail.ru
ORCID ID: 0000-0002-4315-6959
Rússia, Vladivostok

N. Besednova

Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Email: takuznets@mail.ru
Rússia, Vladivostok

T. Zaporozhets

Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor)

Email: takuznets@mail.ru
ORCID ID: 0000-0002-8879-8496
Rússia, Vladivostok

M. Kokoulin

Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences

Email: takuznets@mail.ru
ORCID ID: 0000-0003-2245-6802
Rússia, Vladivostok

Yu. Khotimchenko

Far Eastern Federal University; Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: takuznets@mail.ru
ORCID ID: 0000-0002-6979-1934
Rússia, Vladivostok; Vladivostok

M. Shchelkanov

Somov Research Institute of Epidemiology and Microbiology, Federal Service the Oversight of Consumer Protection and Welfare (Rospotrebnadzor); Far Eastern Federal University; Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Email: takuznets@mail.ru
ORCID ID: 0000-0001-8610-7623
Rússia, Vladivostok; Vladivostok; Vladivostok

Bibliografia

  1. Беседнова Н.Н., Андрюков Б.Г., Запорожец Т.С. и др. Оболочечные вирусы – патогенетическая мишень лектинов цианобактерий // Антибиотики и химиотерапия. 2022. Т. 67. № 5–6. С. 39–60.
  2. Бреслав Н.В., Шевченко Е.С., Абрамов Д.Д. и др. Эффективность применения антинейраминидазных химиопрепаратов во время пандемии гриппа и в постпандемический период // Вопр. вирусологии. 2013. Т. 58. № 1. С. 28–32.
  3. Колобухина Л.В., Меркулова Л.Н., Малышев Н.А. и др. Стратегия ранней противовирусной терапии при гриппе как профилактика тяжелых осложнений // Пульмонология. 2010. № 1. С. 9–14.
  4. Колобухина Л.В., Меркулова Л.Н., Щелканов М.Ю. и др. Пандемический грипп в России: отличительные особенности клинического течения и отсутствие ранней этиотропной терапии как фактор риска развития тяжелых форм заболевания // Терапевтический архив. 2011. Т. 83. № 9. С. 48–53.
  5. Крылова Н.В., Смолина Т.П., Берлизова М.В., Леонова Г.Н. Иммунокорригирующая и противовирусная активность полисахарида из морских бактерий в отношении вируса клещевого энцефалита // Антибиотики и химиотерапия. 2019. Вып. 64. № 11–12. С. 16–24.
  6. Кузнецова Т.А., Запорожец Т.С., Ермакова С.П. и др. Адъюванты на основе полисахаридов из гидробионтов Тихого океана. Владивосток: Дальнаука. 2023.
  7. Лямин А.В., Терещенко В.С., Жестков А.В., Исматуллин Д.Д. Видовое разнообразие представителей рода Streptomyces, выделенных из клинического материала // Инфекция и иммунитет. 2022. Вып. 12. № 2. С. 386–390. doi: 10.15789/2220-7619-SDA-1838
  8. Папуашвили М.Н., Щелканов М.Ю. Эффективность комбинированной терапии герпесвирусных инфекций у ВИЧ-инфицированных пациентов // Вопр. вирусологии. 2004. Т. 49. № 2. С. 25–29.
  9. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА. 2013.
  10. Щелканов М.Ю., Колобухина Л.В., Бургасова О.А. и др. COVID-19: этиология, клиника, лечение // Инфекция и иммунитет. 2020. Т. 10. № 3. С. 421–445.
  11. Щелканов М.Ю., Львов Д.Н., Федякина И.Т. и др. Динамика распространения пандемического гриппа А/H1N1 swl на Дальнем Востоке в 2009 г. // Вопр. вирусологии. 2010. Т. 55. № 3. С. 10–15.
  12. Abu-Ghosh S.A., Dubinsky Z., Verdelho V. Unconventional high-value products from microalgae: A review // Bioresour. Technol. 2021. V. 329. Art. ID 124895. doi: 10.1016/biortech.2021.124895
  13. Almutairi M.H., Helal M.M.I. Exopolysaccharide production from isolated Enterobacter sp. strain ACD2 from the northwest of Saudi Arabia // J. King Saud Univ. Sci. 2021. V. 33. № 2. Art. ID 101318. doi: 10.1016/j.jksus.2020.101318
  14. Al-Nahas M.O., Darwish M.M., Ali A.E., Amin M.A. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. // Afr. J. Microbiol. Res. 2011. V. 5. № 22. P. 3823–3831.
  15. doi: 10.5897/AJMR11.757
  16. Alshawwa S.Z., Alshallash K.S., Ghareeb A. et al. Assessment of pharmacological potential of novel exopolysaccharide isolated from marine Kocuria sp. strain AG5: Broad-spectrum biological investigations // Life. 2022. V. 12. № 9. Art. ID 1387. doi: 10.3390/life12091387
  17. Andreu S., Kobbe C., Delgado P., Ripa I. Dextran sulfate from Leuconostoc mesenteroides B512F exerts potent antiviral activity against SARS-CoV-2 in vitro and in vivo // Front Microbiol. 2023. V. 14. Art. ID 1185504. doi: 10.3389/fmicb.2023.1185504
  18. Anwar A.A., Nowruzi B. Bioactive peptides of Spirulina: A review // Microb. Bioact. 2021. V. 4. № 1. Р. 134–142. doi: 10.25163/microbbioacts.412117BO719110521
  19. Appel K., Munoz E., Navarrete C. et al. Immunomodulatory and inhibitory effect of Immulina, and Immunloges in the Ig-E mediated activation of RBL-2H3 cells. A new role in allergic inflammatory responses // Plants. 2018. V. 7. № 1. Art. ID 13. doi: 10.3390/plants7010013
  20. Arena A., Maugeri T.L., Pavone B. et al. Antiviral and immunoregulatory effect5 of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis // Int. Immunopharmacol. 2006. V. 6. № 1. Р. 8–13. doi: 10.1016/j.intimp.2005.07.004
  21. Babich O., Sukhikh S., Larina V. et al. Algae: study of edible and biologically active fractions, their properties and applications // Plants. 2022. V. 11. № 16. Art. ID 780. doi: 10.3390/plants11060780.
  22. Barcelos M.C.S., Vespermann K.A.C., Pelissari F.M., Molina G. Current status of biotechnological production and applications of microbial exopolysaccharides // Crit Rev Food Sci Nutr. 2020. V. 60. Р. 1475–1495. doi: 10.1080/10408398.2019.1575791
  23. Bello-Morales R., Andreu S., Ruiz-Carpio V. et al. Extracellular polymeric substances: still promising antivirals // Viruses. 2022. V. 14. № 6. Art. ID 1337. doi: 10.3390/v14061337
  24. Bergmann S.M., Reichert M., Hwang J. et al. The application of exopolysaccharides (EPS) can prevent viral disease of fish // Bull. Eur. Assoc. Fish Pathol. 2022. V. 42. № 1. Р. 15–27. doi: 10.48045/001c.38087
  25. Besednova N.N., Andryukov B.G., Kuznetsova T.A. et al. Antiviral effects and mechanisms of action of water extracts and polysaccharides of microalgae and cyanobacteria // J. Pharm. Nutr. Sci. 2022. V. 12. P. 54–73. doi: 10.29169/1927-5951.2022.12.05
  26. Besednova N.N., Andryukov B.G., Zaporozhets T.S. et al. Antiviral effects of polyphenols from marine algae // Biomedicines. 2021. V. 9. № 2. Art. ID 200. doi: 10.3390/biomedicines9020200
  27. Bianculli R.H., Mase J.D., Schulz M.D. Antiviral polymers: past approaches and future possibilities // Macromolecules. 2020. V. 53. Р. 9158–9186. doi: 10.1021/acs.macromol.0c01273
  28. Breitbart M. Marine viruses: truth or dare // Annu. Rev. Mar. Sci. 2012. V. 4. P. 425–448. doi: 10.1146/annurev-marine-120709-142805
  29. Casillo A., Lanzetta R., Parrilli M., Corsaro M.M. Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications // Mar. Drugs. 2018. V. 16. № 2. Art. ID 69. doi: 10.3390/md16020069
  30. Chen Y.-H., Chang G.-K., Kuo S.-M. et al. Well tolerated Spirulina extract inhibits influenza virus replication and reduces virus-induced mortality // Sci. Rep. 2016. V. 6. Art. ID 24253. doi: 10.1038/srep2453
  31. Chen Y.-H., Liao Y.-C., Huang J.-Y. et al. Hot water extract of Arthrospira maxima (AHWE) has broad-spectrum antiviral activity against RNA virus including coronavirus SARS-CoV-2 and the antivirus spray application // Preprint of Far East Bio-Tec Co., Ltd. Taipei, Taiwan. 2021.
  32. doi: 10.1101/2021.06.06.446935
  33. Cingi J., Conk-Dalay S., Cakli H., Bal C. The effect of Spirulina on allergic rhinitis // Eur. Arch. Oto-Rhino-Laringol. 2008. V. 265. № 10. Р. 1219–1223. doi: 10.1007/s00405-008-0642-8
  34. El Awady M.E., Eldin M.A.N., Ibrahim H.M. et al. In vitro evaluation of antioxidant, anticancer, and antiviral activities of exopolysaccharide from Streptomyces hirsutus NRC2018 // J. Appl. Pharm. Sci. 2019. V. 9. № 11. Р. 10–18. doi: 10.7324/JAPS.2019.91102
  35. García A., Fernandez-Sandoval M.T., Morales-Guzman D. et al. Advances in exopolysaccharide production from marine bacteria // J. Chem. Technol. Biotechnol. 2022. V. 97. № 10. Р. 2694–2705. doi: 10.1002/jctb.7156
  36. Geraghty R.J., Aliota M.T., Bonnac L.F. Broad-spectrum antiviral strategies and nucleoside analogues // Viruses. 2021. V. 13. Art. ID 4. P. 667. doi: 10.3390/v13040667
  37. Gugliandolo C., Spano A., Lentini V. et al. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin // J. Appl. Microbiol. 2014. V. 6. № 4. Р. 1028–1034. doi: 10.1111/jam.12422
  38. Hara S., Terauchi K., Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy // Appl. Environ. Microbiol. 1991. V. 57. № 9. P. 2731–2734. doi: 10.1128/aem.57.9.2731-2734.1991
  39. Hassan S.W.M., Hassan A.H.I. Production, characterization and valuable applications of exopolysaccharides from marine Bacillus subtilis SH1 // Pol. J. Microbiol. 2017. V. 66. № 4. Р. 449–461. doi: 10.5604/01.3001.0010.7001
  40. Hirahashi T., Matsumoto M., Hazeki K. et al. Activation of the human innate immune system by spirulina: augmentation of interferon production and NK cytotoxicity by oral administration of hot water extract of Spirulina platensis // Int. Immunopharmacol. 2002. V. 2. № 4. Р. 423–434. doi: 10.1016/s1567-5769(01)00166-7
  41. Karamov E.V., Yaroslavtseva N.G., Shchelkanov M.Yu. et al. Antigenic and genetic relations between different HIV-1 subtypes in Russia // Immunol. Infect. Dis. 1996. V. 6. P. 15–24.
  42. https://api.semanticscholar.org/CorpusID:91155126
  43. Karthika T., Joseph J., Akshay V.R. et al. SARS-CoV-2 Cellular Entry Is Independent of the ACE2 Cytoplasmic Domain Signaling // Cells. 2021. V. 10. № 7. Art. ID 1814. doi: 10.3390/cells10071814
  44. Khavari F., Saidijam M., Taheri M., Nouri F. Microalgae: therapeutic potentials and applications // Mol. Biol. Rep. 2021. V. 48(5). Р. 4757–4765. doi: 10.1007/s11033-021-06422-w
  45. Khotimchenko Yu.S., Shchelkanov M.Yu. Viruses of the Ocean: On the Shores of the Aqua Incognita. Horizons of the Taxonomic Diversity // R. J. Mar. Biol. 2024. V. 50. № 1. P. 3–30.
  46. Kochhar N., Kavya I.K., Shrivastava S. et al. Perspectives on the microorganism of extreme environments and their applications // Curr. Res. Microb. Sci. 2022. V. 3. Art. ID 100134. doi: 10.1016/j.crmicr.2022.100134
  47. Kokoulin M.S., Romanenko L.A., Kuzmich A.S., Chernikov O. Structure of the cell-wall-associated polysaccharides from the deep-sea marine bacterium Devosia submarina KMM9415T // Mar. Drugs. 2021. V. 19. № 12. Art. ID 665. doi: 10.3390/md19120665
  48. Laroche C. Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and application // Mar. Drugs. 2022. V. 20. № 5. Art. ID 336. doi: 10.3390/md20050336
  49. Levasseur W., Perré P., Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification // Biotechnol. Adv. 2020. V. 41. Art. ID 107545. doi: 10.1016/j.biotechadv.2020.107545
  50. Liu T., Ren Q., Wang S. et al. Chemical modification of polysaccharides: a review of synthetic approaches, biological activity and the structure-activity relationship // Molecules. 2023. V. 28. № 16. Art. ID 6073. doi: 10.3390/molecules28166073
  51. Merino N., Aronsdon H.S., Bojanova D.P., Feyhl-Buska J. Living at the extremes: extremophiles and the limits of life in a planetary context // Front. Microbiol. 2019. V. 10. Art. ID 780. doi: 10.3389/fmcb.2019.00780
  52. Mishra N., Gupta E., Walag A.M.P. et al. A review of marine natural product resources with potential bioactivity against SARS-CoV-2 // Trop. J. Nat. l Prod. Res. 2023. V. 7. № 1. Р. 2093–2103. doi: 10.26538/tjnpr/v7i1.2
  53. Moreira J.B., Vaz B.S., Cardias B.B. et al. Microalgae polysaccharides: an alternative source for food production and sustainable agriculture // Polysaccharides. 2022. V. 3. Р. 441–457. doi: 10.3390/polysaccharides3020027
  54. Nigam S., Singh R., Bhardwaj S.K. et al. Perspective on the therapeutic applications of algal polysaccharides // J. Polym. Environ. 2022. V. 30. Р. 785–809. doi: 10.1007/s10924-021-02231-1
  55. Panchal R., Prajapati K., Prajapati M. et al. Bacterial exopolysaccharides: types, its biosynthesis and their application in different Fields // Acta Sci. Biotechnol. 2022. V. 3. № 2. Р. 3–11.
  56. Pendyala B., Patras A. In silico screening of food bioactive compounds to predict potential inhibitors of COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) // Preprint of Department of Agricultural and Environmental Sciences, Tennessee State University. Nashville, USA. 2020. Р. 1–11.
  57. doi: 10.26434/chemrxiv.12051927.v2
  58. Petit L., Vernes L., Cadoret J.P. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2 // J. Appl. Phycol. 2021. V. 33. № 3. P. 1579–1602. doi: 10.1007/s10811-021-02372-9
  59. Poli A., Anzelmo G., Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities // Mar. Drugs. 2010. V. 8. № 6. Р. 1779–1802. doi: 10.3390/md8061779
  60. Qi M., Zheng C., Wu W. et al. Exopolysaccharides from marine microbes: source, structure and application // Mar. Drugs. 2022. V. 20. № 8. Art. ID 512. doi: 10.3390/md20080512
  61. Ratha S.K., Renuka N., Rawat M. et al. Prospective options of algae derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases // Nutrition. 2021. V. 83. Art. ID 111089. doi: 10.1016/j.nut2020.111089
  62. Reichert M., Bergmann S., Lindenberger C. et al. Antiviral activity of exsopolysaccharides from Arthrospira platensis against koi herpesvirus // J. Fish Dis. 2017. V. 40. № 10. Р. 1441–1450. doi: 10.1111/jfd.12618
  63. Riccio G., Ruocco N., Mutalipassi M. et al. Ten-Year research update review: antiviral activities from marine organisms // Biomolecules. 2020. V. 10. № 7. Art. ID 1007. doi: 10.3390/biom10071007
  64. Rosales-Mendoza I., García-Silva O., González-Ortega O. et al. The potential of algal biotechnology to produce antiviral compounds and biopharmaceuticals // Molecules. 2020. V. 25. Art. ID 4049. doi: 10.3390/molecules25184049
  65. Saadat Y.R., Khosroushahi A.Y., Gargari B.P. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides // Carbohydr. Polym. 2019. V. 217. Р. 79–89. doi: 10.1016/j.carbpol.2019.04.025
  66. Salimi F., Farrokh P. Recent advances in the biological activities of microbial exopolysaccharides // World J. Microbiol. Biotechnol. 2023. V. 39. Art. ID 213. doi: 10.1007/s11274-023-03660
  67. Shyam P.P., Rajkumar P., Ramya V. et al. Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential // Carbohydr. Polym. Technol. Appl. 2021. V. 2. № 25. Art. ID 100070. doi: 10.1016/jcarpta.2021.100070
  68. Spano A., Arena A. Bacterial exopolysaccharide of shallow marine vent origin as agent in counteracting immune disorders induced by herpes virus // J. Immunoassay Immunochem. 2016. V. 37. № 3. Р. 251–260. doi: 10.1080/15321819.2015.1126602
  69. Van Erp E.A., van Kampen M.R., van Kasteren P.B., de Wit J. Viral infection of human natural killer cells // Viruses. 2019. V. 11. № 3. Art. ID 243. doi: 10.3390/v11030243
  70. Vavilin V.A., Shchelkanov M.Yu., Lokshina L.Y. et al. A comparative analysis of a balance between the rates of polymer hydrolysis and acetoclastic methanogenesis during anaerobic digestion of solid waste // Water Sci. Technol. 2002. V. 45. № 10. P. 249–254. doi: 10.2166/wst.2002.0345
  71. Wang W., Wang Sh.-X., Guan H.-S. The antiviral activities and mechanisms of marine polysaccharides: an overview // Mar. Drugs. 2012. V. 10. № 12. Р. 2795–2816. doi: 10.3390/md10122795
  72. Zhu D., Adebisi W.A., Ahmad F. et al. Recent development of extremophilic bacteria and their application in biorefinery // Front Bioeng. Biotechnol. 2020. V. 8. Art. ID 483. doi: 10.3389/fbioe.2020.00483

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2024