Synthesis and structural features of Co(II) compounds with 3-arylidene-1-pyrroline derivatives and monocarboxylic acids anions
- Autores: Voronina Y.K.1, Zvereva O.V.1,2, Shmelev M.A.1, Zorina-Tikhonova E.N.1, Rogachev A.V.3, Sidorov A.A.1, Eremenko I.L.1
-
Afiliações:
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
- MIREA — Russian Technological University
- Edição: Volume 51, Nº 5 (2025)
- Páginas: 343-352
- Seção: Articles
- URL: https://cardiosomatics.orscience.ru/0132-344X/article/view/685417
- DOI: https://doi.org/10.31857/S0132344X25050071
- EDN: https://elibrary.ru/KVJOUQ
- ID: 685417
Citar
Resumo
A series of acetate and trifluoroacetate compounds of cobalt(II) with derivatives of 3-arylidene-1-pyrrolines (X-L; X = Cl, OH) as N-donor ligands was synthesized. Varying the synthesis and crystallization conditions made it possible to obtain coordination compounds of various compositions and structures: a tetranuclear complex based on a cubane fragment {Co4(OH)4}4– — [Co4(OH)4(Cl–L)4(OAc)4] (I), a 1D-polymer complex [Co(H2O)(Cl–L)2(CF3COO)1.167(OAc)0.833]n (II) or a molecular complex [Co(OH–L)2(OAc)2] (III). The synthesized compounds were characterized by X-ray diffraction, IR spectroscopy and CHN analysis. The structure and crystal packing of the obtained complexes were analyzed in detail, the main structure-forming non-covalent interactions in crystals were identified.
Palavras-chave
Texto integral

Sobre autores
Yu. Voronina
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: juliavoronina@mail.ru
Rússia, Moscow
O. Zvereva
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences
Email: juliavoronina@mail.ru
Rússia, Moscow; Moscow
M. Shmelev
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: juliavoronina@mail.ru
Rússia, Moscow
E. Zorina-Tikhonova
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: juliavoronina@mail.ru
Rússia, Moscow
A. Rogachev
MIREA — Russian Technological University
Email: juliavoronina@mail.ru
Rússia, Moscow
A. Sidorov
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: juliavoronina@mail.ru
Rússia, Moscow
I. Eremenko
N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: juliavoronina@mail.ru
Rússia, Moscow
Bibliografia
- Keller L.-A., Merkel O., Popp A. // Drug Deliv Transl Res. 2022. V. 12. № 4. P. 735.
- Jeong W.Y., Kwon M., Eun Choi H., Su Kim K. // Biomater Res. 2021. V. 25. № 1. P. 24.
- Thomford N.E., Senthebane D.A., Rowe A. et al. // Int. J. Mol. Sci. 2018. V. 19. № 6. Р. 1578.
- Krasnovskaya O., Naumov A., Guk D. et al. // Int. J. Mol. Sci. 2020. V. 21. № 11. Р. 3965.
- Psomas G. // Coord. Chem. Rev. 2020. V. 412. P. 213259.
- Ghanghas P., Choudhary A., Kumar D., Poonia K. // Inorg. Chem. Commun. 2021. V. 130. P. 108710.
- El-Gammal O.A., Mohamed F.S., Rezk G.N., ElBindary A.A. // J. Mol. Liq. 2021. V. 330. P. 115522.
- Pellei M., Del Bello F., Porchia M., Santini C. // Coord. Chem. Rev. 2021. V. 445. P. 214088.
- Uvarova M.A., Lutsenko I.A., Shmelev M.A. et al // New. J. Chem. 2024. V. 48. № 2. P. 717.
- Shmelev M.A., Chistyakov A.S., Razgonyaeva G.A. et al. // Crystals. 2022. V. 12. № 4. Р. 508.
- Leung C.-H., Zhong H.-J., Chan D. S.-H. et al. // Coord. Chem. Rev. 2013. V. 257. № 11‒12. P. 1764.
- Ronconi L., Sadler P.J. // Coord. Chem. Rev. 2007. V. 251. № 13‒14. P. 1633.
- Liu W., Gust R. // Coord. Chem. Rev. 2016. V. 329. P. 191.
- Bazhina E.S., Bovkunova A.A., Shmelev M.A. et al. // Inorg. Chim. Acta. 2023. V. 547. Р. 121359.
- Klintworth R., de Koning C.B., Opatz T., Michael J.P. // J. Org. Chem. 2019. V. 84. № 17. P. 11025.
- Saraswat P., Jeyabalan G., Hassan M.Z. et al. // Synth. Commun. 2016. P. 1643.
- Ahmad Bhat A., Singh I., Tandon N., Tandon R. // Eur. J. Med. Chem. 2023. V. 246. P. 114954.
- Fernandes L. de P., Silva J.M.B., Martins D.O.S. et al. // Int. J. Mol. Sci. 2020. V. 21. № 21. P. 8355.
- Delehanty J.B., Bongard J.E., Thach D.C. et al. // J. Biol. Chem. 2008. V. 16. № 2. P. 830.
- Smolobochkin, A.V., Gazizov, A.S., Melyashova, A.S. et al. // RSC Advances. 2017. V. 7. № 80. P. 50955.
- Rizbayeva T.S., Smolobochkin A.V, Gazizov A.S. et al. // J. Org. Chem. 2023. V. 88. P. 11855.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339.
- Casanova D., Llunell M., Alemany P., Alvarez S. et al. // Chem. Eur. J. 2005. V. 11. P. 1479.
- Lee S.Y., Kim N., Lee M.M. et al. // Dalton Trans. 2016. V. 45. P. 1727.
- Nguyen A.I., Wang J., Levine D.S. et al. // Chem. Sci. 2017. V. 8. P. 4274.
- Zhao H., Bacsa J., Dunbar K.R. // Acta Crystallogr. E. 2004. V. 60. P. m637.
- Fomina I.G., Dobrokhotova Zh.V, Aleksandrov G.G. et al. // Russ. Chem. Bull. 2009. V. 58. P. 11.
- Newton G.N., Cooper G.J.T., Kögerler P. et al. // J. Am. Chem. Soc. 2008. V. 130. P. 790.
- Cooper G.J.T., Newton G.N., Kogerler P. et al. // Angew. Chem. Int. Ed. 2007. V. 46. P. 1340.
- Andaloussi Y.H., Sensharma D., Bezrukov A.A et al. // Cryst. Growth. Des. 2023. V. 23. P. 3019. https://doi.org/10.1021/acs.cgd.3c00094
- Zvereva O.V., Rizbaeva T.S., Shmelev M.A. et al. // J. Struct. Chem. 2024. V. 65. № 7. P. 1439.
Arquivos suplementares
