Comparative analysis of research behavior of laboratory mice and wild rodents in standard and enriched versions of the open field task

Abstract

Exploratory activity is a vital form of behavior influenced by the habitat and individual experiences of animals. To assess the roles of these factors, we studied exploratory behavior in an identical setting among three rodent species that differ in their ecological niches, navigation characteristics, and levels of individual experience: wild animals from natural populations — bank voles (Clethrionomys glareolus) and the herb field mouse (Sylvaemus uralensis)—and C57BL/6J laboratory mice. Exploratory behavior was measure in a standardized open field test. To evaluate the influence of environmental novelty, animals had four sessions of empty open field exploration explored followed by four sessions in an enriched open field. Expert annotation of the behavioral patterns revealed that the animals engaged in 11 specific behavioral acts to explore the empty arena and 22 types of acts in the enriched arena. Notably, we identified specific behavioral acts in either wild rodents or laboratory mice. Bank voles displayed significantly less exploratory activity compared to the mouse species, which showed only slight differences in exploratory behavior. A key factor influencing the exploratory activity of the compared species was the enrichment of the arena with objects. The addition of objects not only increased the overall exploratory activity of the animals but also altered the structure of their exploratory behavior. Contrary to the initial hypothesis, the factor of environmental novelty had the least influence on behavior, with effects varying depending on specific behavioral forms and manifesting only in combination with other factors. The results reveal complex and nonlinear relationships among the factors determining rodent behavior in the open field task, which should be considered in analyzing the neural bases of this behavior and interpreting exploratory behavior in natural conditions.

Full Text

Restricted Access

About the authors

G. A. Rogov

Lomonosov Moscow State University

Author for correspondence.
Email: oivashkina@gmail.com
Russian Federation, Moscow

K. A. Toropova

Lomonosov Moscow State University

Email: oivashkina@gmail.com
Russian Federation, Moscow

O. S. Rogozhnikova

Lomonosov Moscow State University

Email: oivashkina@gmail.com
Russian Federation, Moscow

V. Yu. Oleynichenko

Lomonosov Moscow State University

Email: oivashkina@gmail.com
Russian Federation, Moscow

O. I. Ivashkina

Lomonosov Moscow State University

Email: oivashkina@gmail.com
Russian Federation, Moscow

References

  1. Григоркина Е.Б., Оленев Г.В., Модоров М.В. Анализ населения грызунов в районах техногенного неблагополучия (на примере Apodemus (S.) Uralensis из зоны ВУРСА). Экология. 2008. 4: 299–306.
  2. Громов В.C. Пространственно-этологическая структура популяций грызунов. М: Т-во науч. изд. КМК, 2008. 581 с.
  3. Громов И.М., Ербаева, М.А. Млекопитающие фауны России и сопредельных территорий. Зайцеобразные и грызуны. СПб.: ЗИН РАН, 1995. 239 с.
  4. Миронов А.Д., Кожевников B.C. Характер передвижения рыжей полевки Clethrionomys glareolus в пределах участка и вне его. Зоол. журнал. 1982. 61(9): 1413–1418.
  5. Akiti K., Tsutsui-Kimura I., Xie Y., Mathis A., Markowitz J. E., Anyoha R., Datta S. R., Mathis M. W., Uchida N., Watabe-Uchida M. Striatal dophamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron. 2022. 110(22): 3789–3804.
  6. Apfelbach R., Blanchard C.D., Blanchard R.J., Hayes R.A., McGregor I.S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci Biobehav Rev. 2005. 29(8): 1123–1144.
  7. Augustsson H., Meyerson B.J. Exploration and risk assessment: a comparative study of male house mice (Mus musculus musculus) and two laboratory strains. Physiol. Behav. 2004. 81(4): 685–698.
  8. Barnett S.A. Exploratory behaviour. Br J Psychol. 1958. 49(4): 289–310.
  9. Birke L.I., D’Udine B., Emanuela Albonetti M. Exploratory behavior of two species of murid rodents, Acomys cahirinus and Mus musculus: A comparative study. Behav and Neural Biol. 1985. 43: 143–161.
  10. Casadesus G., Shukitt-Hale B., Joseph J.A. Automated measurement of age-related changes in the locomotor response to environmental novelty and home-cage activity. Mech Ageing Dev. 2001. 122(15): 1887–1897.
  11. Cavegn N., van Dijk R.M., Menges D., Brettschneider H., Phalanndwa M., Chimimba C.T., Isler K., Lipp H.P., Slomianka L., Amrein I. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents. Front Neurosci. 2013. 7: 59.
  12. Cercato M.C., Colettis N., Snitcofsky M., Aguirre A.I., Kornisiuk E.E., Baez M.V., Jerusalinsky D.A. Hippocampal NMDA receptors and the previous experience effect on memory. J Physiol Paris. 2014. 108(4–6): 263–269.
  13. Chrzanowska A., Modlinska K., Goncikowska K., Pisula W. Rat’s response to a novelty and increased complexity of the environment resulting from the introduction of movable vs. stationary objects in the free exploration test. PLoS ONE. 2022. 17(12): e0279006.
  14. Cohen, D., Teodorescu K. On the Effect of Practice on Exploration and Exploitation of Options and Strategies. Front Psychology. 2021. 12: 725690.
  15. Corp N., Gorman M.L., Speakman J.R. Ranging behaviour and time budgets of male wood mice Apodemus sylvaticus in different habitats and seasons. Oecologia. 1997. 109(2): 242–250.
  16. Cox C.D., Palmer L.C., Pham D.T., Trieu B.H., Gall C.M., Lynch G. Experiential learning in rodents: past experience enables rapid learning and localized encoding in hippocampus. Learn Mem. 2017. 24(11): 569–579.
  17. Dell’Omo G., Pleskacheva M.G., Wolfer D.P., Lipp H.-P., Shore R.F. Comparative Effects of Exposure to an Organophosphate Pesticide on Locomotor Activity of Laboratory Mice and Five Species of Wild Rodents. Bull Environ Contam Toxicol. 2003. 70(1): 138–145.
  18. Donovan J., Slomianka L. Distribution of mossy fibres in the hippocampus of two closely related species of mice. Brain Res. 1996. 732(1–2): 253–256.
  19. Fan M., Liu S., Sun H.M., Ma M.D., Gao Y.J., Qi C.C., Xia Q.R., Ge J.F. Bilateral intracerebroventricular injection of streptozotocin induces AD-like behavioral impairments and neuropathological features in mice: Involved with the fundamental role of neuroinflammation. Biomed Pharmacother. 2022. 153: 113375.
  20. File S.E. Factors controlling measures of anxiety and responses to novelty in the mouse. Behav. Brain Res. 2001. 125: 151–157.
  21. Fredes F., Shigemoto R. The role of hippocampal mossy cells in novelty detection. Neurobiol Learn Mem. 2021. 183: 107486.
  22. Galsworthy M.J., Amrein I., Kuptsov P.A., Poletaeva I.I., Zinn P., Rau A., Vyssotski A., Lipp H.P. A comparison of wild-caught wood mice and bank voles in the Intellicage: assessing exploration, daily activity patterns and place learning paradigms. Behav. Brain Res. 2005. 157(2): 211–217.
  23. García-Mendoza D., van den Berg H.J.H.J., van den Brink N.W. Environmental exposure to cadmium reduces the primary antibody-mediated response of wood mice (Apodemus sylvaticus) from differentially polluted locations in the Netherlands. Environ. Pollut. 2021. 289: 117909.
  24. Gordon G., Fonio E., Ahissar E. Emergent exploration via novelty management. J Neurosci. 2014. 34(38): 12646–12661.
  25. Hughes R.N. Neotic preferences in laboratory rodents: issues, assessment and substrates. Neurosci Biobehav Rev. 2007. 31(3): 441–464
  26. Jörimann M., Maliković J., Wolfer D.P., Pryce C.R., Endo T., Benner S., Amrein I. Bank Voles Show More Impulsivity in IntelliCage Learning Tasks than Wood Mice. Neuroscience. 2023. 510: 157–170.
  27. Kaikusalo A. Population turnover and wintering of the bank vole, Clethrionomys glareolus (Schreb.), in southern and central Finland. Annales Zoologici Fennici. 1972. 9(4): 219–224.
  28. Kamimura Y., Kuwagaki E., Hamano S., Kobayashi M., Yamada Y., Takahata Y., Yoshimoto W., Morimoto H., Yasukawa T., Uozumi Y., Nagasawa K. Reproducible induction of depressive-like behavior in C57BL/6J mice exposed to chronic social defeat stress with a modified sensory contact protocol. Life Sci. 2021. 282: 119821.
  29. Kazlauckas V., Schuh J., Dall’Igna O.P., Pereira G.S., Bonan C.D., Lara D.R. Behavioral and cognitive profile of mice with high and low exploratory phenotypes. Behav Brain Res. 2005. 162(2): 272–278.
  30. Knight P., Chellian R., Wilson R., Behnood-Rod A., Panunzio S., Bruijnzeel A.W. Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav. 2021. 204: 173168.
  31. Koizumi R., Kiyokawa Y., Tanaka K.D., Kimura G., Tanikawa T., Takeuchi Y. Existence of wild brown rats (Rattus norvegicus) that are indifferent to novel objects. J Vet Med Sci. 2021. 83(1): 78–83.
  32. Lalonde R., Strazielle C. Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity. Rev Neurosci. 2017. 28(6): 617–648.
  33. La-Vu M., Tobias B.C., Schuette P.J., Adhikari A. To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Front Behav Neurosci. 2020. 14: 145.
  34. Lopes G., Bonacchi N., Frazão J., Neto J.P., Atallah B.V., Soares S., Moreira L., Matias S., Itskov P.M., Correia P.A., Medina R.E., Calcaterra L., Dreosti E., Paton J.J., Kampff A.R. Bonsai: an event-based framework for processing and controlling data streams. 2015. Front Neuroinform 9: 7.
  35. Maasberg D.W., Shelley L.E., Gilbert P.E. Age-related changes in detection of spatial novelty. Behav Brain Res. 2012. 228(2): 447–451.
  36. Mackay M.K., Pillay N. Environmental correlates of exploratory behavior and anxiety in three African striped mouse (Rhabdomys) taxa occurring in different habitats and contexts. J Comp Psychol. 2021. 135(3): 304–314.
  37. Mañas-Padilla M.C., Ávila-Gámiz F., Gil-Rodríguez S., Ladrón de Guevara-Miranda D., Rodríguez de Fonseca F., Santín L.J., Castilla-Ortega E. Persistent changes in exploration and hyperactivity coexist with cognitive impairment in mice withdrawn from chronic cocaine. Physiol Behav. 2021. 240: 113542.
  38. Martin Y., Gerlach G., Schlötterer C., Meyer A. Molecular phylogeny of European muroid rodents based on complete cytochrome b sequences. Mol Phylogenet Evol. 2000. 16(1): 37–47.
  39. Mei J., Kohler J., Winter Y., Spies C., Endres M., Banneke S., Emmrich J.V. Automated radial 8-arm maze: A voluntary and stress-free behavior test to assess spatial learning and memory in mice. Behav Brain Res. 2020. 381: 112352.
  40. Michaux J.R., Chevret P., Filippucci M.-G., Macholan M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol. 2002. 23(2): 123–136.
  41. Midlick D.M., Garris S.S., Rohrer K.N., Ferkin M.H. Sexual differences in responses of meadow voles to environmental cues in the presence of mink odor. Anim Cogn. 2022. 25(4): 1003–1011.
  42. Montgomery K.C. The relation between fear induced by novel stimulation and exploratory drive. J Comp Physiol Psychol. 1955. 48(4): 254–260.
  43. Niu Y., Liang S. Genetic differentiation within the inbred C57BL/6J mouse strain. J Zool. 2009. 278(1): 42–47.
  44. Patil S.S., Schlick F., Höger H., Lubec G. Linkage of hippocampal proteins to spatial memory formation and strain-dependence in Apodemus sylvaticus, C57BL/6J and PWD/PhJ mice. Neurochem Int. 2010. 56(3): 522–527.
  45. Patil S.S., Boddul S.V., Schlick K., Kang S.U., Zehetmayer S., Höger H., Lubec G. Differences in hippocampal protein levels between C57Bl/6J, PWD/PhJ, and Apodemus sylvaticus are paralleled by differences in spatial memory. Hippocampus. 2011. 21(7): 714–723.
  46. Pentkowski N.S., Rogge-Obando K.K., Donaldson T.N., Bouquin S.J., Clark B.J. Anxiety and Alzheimer’s disease: Behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology. Neurosci Biobehav Rev. 2021. 127: 647–658.
  47. Pervin L.A. Definitions, measurements, and classifications of stimuli, situations, and environments. Hum Ecol. 1978 6: 71–105.
  48. Pleskacheva M.G., Wolfer D.P., Kupriyanova I.F., Nikolenko D.L., Scheffrahn H., Dell’Omo G., Lipp H.P. Hippocampal mossy fibers and swimming navigation learning in two vole species occupying different habitats. Hippocampus. 2000. 10(1): 17–30.
  49. Quintanilla J., Cox B.M., Gall C.M., Mahler S.V., Lynch G. Retrograde enhancement of episodic learning by a postlearning stimulus. Learn Mem. 2021. 28(3): 82–86.
  50. Rosenthal M.J., Varela M., Garcia A., Britton D.R. Age-related changes in the motor response to environmental novelty in the rat. Exp Gerontol. 1989. 24(2): 149–157.
  51. Rymer T.L., Pillay N. The Development of Exploratory Behaviour in the African Striped Mouse Rhabdomys Reflects a Gene × Environment Compromise. Behav Genet. 2012. 42: 845–856.
  52. Seibenhener M.L., Wooten M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015. 96: e52434.
  53. Shieh K.R., Yang S.C. Exploratory and agile behaviors with central dopaminergic activities in open field tests in Formosan wood mice (Apodemus semotus). J Exp Biol. 2019. 222(Pt 18): jeb199356.
  54. Staykov H., Lazarova M., Hassanova Y., Stefanova M., Tancheva L., Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci. 2022. 72(5): 1018–1025.
  55. Stopka P., Macdonald D.W. Way-marking behaviour: an aid to spatial navigation in the wood mouse (Apodemus sylvaticus). BMC Ecol. 2003. 3: 3.
  56. Tamayo E., Mouland J.W., Lucas R.J., & Brown T.M. Regulation of mouse exploratory behaviour by irradiance and cone-opponent signals. BMC biology. 2023. 21(1): 178.
  57. Tupikova N.V., Sidorova G.A., Konovalova E.A. A method of age determination in Clethrionomys. Acta Theriol. 1968. 13: 99–115.
  58. van Dijk R.M., Wiget F., Wolfer D.P., Slomianka L., Amrein I. Consistent within-group covariance of septal and temporal hippocampal neurogenesis with behavioral phenotypes for exploration and memory retention across wild and laboratory small rodents. Behav Brain Res. 2019. 372: 112034.
  59. Verjat A, Devienne P, Rödel HG, Féron C. More exploratory house mice judge an ambiguous situation more negatively. Anim Cogn. 2021. 24 (1): 53–64.
  60. Wiget F., van Dijk R.M., Louet E.R., Slomianka L., Amrein I. Effects of Strain and Species on the Septo-Temporal Distribution of Adult Neurogenesis in Rodents. Front Neurosci. 2017. 11: 719.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The scheme of the experiment. (a) – empty open field, (б) – enriched open field, (в) – photo of enriched open field, (г) – experimental procedure.

Download (265KB)
3. Fig. 2. The number and total duration of sniffing and head raises in bank voles (C. glareolus), herb field mice (S. uralensis), and laboratory mice (C57Bl/6J) in the empty and enriched open field (OF). (a) – number of sniffing, (б) – total duration of sniffing, (в) – number of head raises, (г) – total duration of head raises. B-1, B-4 – first and fourth sections in the empty OF, respectively; C-1, C-4 – first and fourth sections in the enriched OF, respectively. *** – p < 0.0001, factor “type of OF,” in the empty OF, animals exhibit more sniffing, more head raises, and greater total duration of head raises compared to the enriched OF; xx – p < 0.01, factor “type of OF,” in the enriched OF, the total duration of sniffing is greater than in the empty OF; ++ – p < 0.01, +++ – p < 0.0001 in pairwise comparisons of each species with each other; ~~ – p < 0.01 when comparing bank voles and laboratory mice with herb field mice; ### – p < 0.0001 when comparing bank voles and small forest mice with laboratory mice, Tukey’s post hoc test.

Download (346KB)
4. Fig. 3. The number and total duration of supported and unsupported rearing in bank voles (C. glareolus), herb field mice (S. uralensis), and laboratory mice (C57Bl/6J) in empty and enriched OF. (a) – number of supported rearings, (б) – total duration of supported rearings, (в) – number of unsupported rearings, (г) – total duration of unsupported rearings. B-1, B-4 – first and fourth exposure to the empty OF, respectively; C-1, C-4 – first and fourth exposure to the enriched OF, respectively. * – p < 0.05, *** – p < 0.0001, factor “type of OF”, animals in the empty OF perform more supported and unsupported rearings, and the total duration of supported rearings is higher than in the enriched OF; +++ – p < 0.0001 in pairwise comparison between each species; ^^^ – p < 0.0001 when comparing herb field mice and laboratory mice with bank voles; @@ – p = 0.009 in comparison of the duration of unsupported rearings in laboratory mice during the 1st and 4th exposure to the enriched OF, Tukey’s post hoc test.

Download (332KB)
5. Fig. 4. The number of object exploration acts in bank voles (C. glareolus), herb field mice (S. uralensis), and laboratory mice (C57Bl/6J) in the enriched OF. (a) – number of object sniffings, (б) – number of object touches, (в) – number of instances of being on the object, (г) – number of crossings over objects. C-1, C-4 – first and fourth exposure to the enriched OF. ** – p < 0.01, *** – p < 0.0001, factor “day,” animals perform more sniffing and touching of objects during the 1st exposure to the enriched OF than during the 4th exposure; +++ – p < 0.0001 in pairwise comparison between each species during the 1st exposure to the enriched OF; ### – p < 0.0001 when comparing bank voles and herb field mice with laboratory mice; ^ – p < 0.05 when comparing herb field mice with bank voles, Tukey’s post hoc test.

Download (240KB)
6. Fig. 5. The proportion of bank voles (C. glareolus), herb field mice (S. uralensis), and laboratory mice (C57Bl/6J) demonstrating jumping (a), resting (б), and scratching (в) in the empty and enriched OF. ** – p < 0.0056 when comparing the empty OF with the enriched OF; ^ – p < 0.0056 when comparing herb field mice and laboratory mice with bank voles; # – p < 0.0056 when comparing bank voles and herb field mice with laboratory mice; @ – p < 0.0056 when comparing the proportion of laboratory mice performing jumps in the empty and enriched OF, chi-square test.

Download (158KB)

Copyright (c) 2025 Russian Academy of Sciences