Does the selection of fox for their reactions to humans affect the decision-making during learning?

Abstract

In foxes selectively bred by IC&G SB RAS for domestication or aggressive behavior toward humans, the behavior was analyzed. We have used the foxes not selected for behavior features as a control. Control foxes also were bred on experimental farm of IC&G SB RAS. The peculiarities of explorative activities of foxes toward new objects, introduced inside the domestic cage, as well as behavioral features during attenuation of focused attention on the object of food reinforcement are discussed in the paper. Domesticated foxes demonstrated less neofobia during experiments then aggressive and unselected ones. On the other hand, the explorative behavior of tame foxes was characterized by a greater variability of motor reactions compared to aggressive and unselected ones. In the test for attenuation of focused attention, tame foxes used a greater number of different actions compared to other studied groups. Fox cubs from the domesticated population, placed in a new environment for the first time, found various ways go through obstacles when following a person. Based on these results we discuss the peculiarities of the decision-making in foxes.

Full Text

Restricted Access

About the authors

I. A. Mukhamedshina

Institute of Cytology and Genetics, Siberian Division

Author for correspondence.
Email: aden_66@mail.ru
Russian Federation, Novosibirsk

A. V. Kharlamova

Institute of Cytology and Genetics, Siberian Division

Email: kharlam@bionet.nsc.ru
Russian Federation, Novosibirsk

References

  1. Беляев Д.К. Современная наука и проблемы исследования человека. Вопр. философии. 1981. 3: 3–16.
  2. Васильева Л.Л. Анализ эффекта доместикации в изменении способности серебристо-черных лисиц (Vulpes vulpes) к обучению Эволюционно-генетические и генетико-физиологические аспекты доместикации пушных зверей. Новосибирск. 1991а. 57–69.
  3. Васильева Л.Л. Феногенетический анализ поведения серебристо-черных лисиц (Vulpes vulpes) при ослаблении эффективности отбора на доместикацию. Дисс. … к.б.н. Новосибирск. ИЦиГ СО РАН. 1991б. 184 с.
  4. Зорина З.А.Полетаева И.И. Элементарное мышление животных: Учеб. пособие по ВНД и зоопсихологии. 2003.
  5. Князева В.В. К теории понятия “вариативное мышление”. Вестник Оренбургского государственного педагогического университета. 2008. 1: 96–109.
  6. Криволапчук Н.Д. Прикладная психология собаки. Ростов-на-Дону: Феникс. 2008. 558 с.
  7. Крушинский Л.В. Формирование поведения животных в норме и патологии. Издательство Московского университета. 1960. 263 с.
  8. Мухамедшина И.А., Харламова А.В., Трут Л.Н. Изменяет ли отбор лисиц на доместикацию и агрессивность их способность концентрировать внимание и формировать двигательный навык? Журн. высш. нервн. деят. им. И.П. Павлова. 2014. 64 (5): 521–530. http://doi.org/10.7868/S0044467714050086
  9. Мухамедшина И.А., Харламова А.В., Трут Л.Н. Некоторые особенности высшей нервной деятельности лисиц и влияние на них отбора по социальным реакциям на человека. Журн. высш. нервн. деят. им. И.П.Павлова. 2019а. 69 (1): 88–97. http://doi.org/10.1134/S0044467719010076
  10. Мухамедшина И.А., Харламова А.В., Трут Л.Н. Поведение доместицируемых и агрессивных лисиц в ситуации выбора между разными количествами кусочков пищи. Журн. высш. нервн. деят. им. И.П.Павлова. 2019б. 69 (5): 590–600. http://doi.org/10.1134/S0044467719050083
  11. Трут Л.Н., Харламова А.В., Владимирова А.В., Гербек Ю.Э. Об отборе лисиц на агрессивность и его коррелированных последствиях. Вавиловский журнал генетики и селекции. 2017. 21 (4): 392–401. http://doi.org/10.18699/VJ17.257
  12. Alagoz O., Hsu H., Schaefer A.J., Roberts M.S.Markov decision processes: a tool for sequential decision making under uncertainty. Med. Decis. Making 2010. 30 (4): 474–483. http://doi.org/10.1177/0272989X09353194
  13. Balleine B.W., Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 1998. 37 (4–5): 407–419.
  14. Banszegi O., Urrutia A., Szenczi P., Hudson R. More or less: spontaneous quantity discrimination in the domestic cat. Anim. Cogn. 2016. 19 (5): 879–888 http://doi.org/10.1007/s10071–016–0985–2
  15. Benson-Amram S., Holekamp K.E. Innovative problem solving by wild spotted hyenas. Proceedings of the Royal Society B: Biological Sciences. 2012. 279 (1744): 4087–4095. http://doi.org/10.1098/rspb.2012.1450
  16. Charnov E.L. Optimal foraging, the marginal value theorem. Theoretical Population Biology. 1976. 9: 129–136.
  17. Dezfouli A., Balleine B.W. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized. PLoS Comput. Biol. 2013. 9 (12): e1003364
  18. Dolan R.J., Dayan P. Goals and habits in the brain. Neuron 2013. 80 (2): 12–325 http://doi.org/10.1016/j.neuron.2013.09.007
  19. Friston K., FitzGerald T., Rigoli F., Schwartenbeck P., O’Doherty J., Pezzulo G. Active inference and learning. Neuroscience & Biobehavioral Reviews. 2016. 68: 862–879. http://doi.org/10.1016/j.neubiorev.2016.06.022
  20. Friston K.J. Active inference and cognitive consistency. Psychological inquiry. 2018. V. 29, №. 2. P. 67–73. http://doi.org/10.1080/1047840X.2018.1480693
  21. Fudenberg D., Newey W., Strack P., Strzalecki T. Testing the drift-diffusion model. Proceedings of the National Academy of Sciences. 2020. V. 117 (52): 33141–33148.
  22. Griffin A.S., Guez D. Innovation and problem solving: a review of common mechanisms. Behavioural Processes. 2014. 109: 121–134. http://doi.org/10.1016/j.beproc.2014.08.027
  23. Hare B., Plyusnina I., Ignacio N., Schepina O., Stepika A., Wrangham R., Trut L.Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Current Biology. 2005. 15 (3): 226–230.
  24. Keramati M., Dezfouli A., Piray P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 2011. 7 (5): e1002055.
  25. Lutz C., Tiefenbacher Meyer J., Novak M.S., Extinction deficits in male rhesus macaques with a history of self‐injurious behavior. American Journal of Primatology: Official Journal of the American Society of Primatologists. 2004. 63 (2): P. 41–48.
  26. Macpherson K., Roberts W. Can dogs count? Learning and Motivation. 2013. (44) 4: 241–251. http://doi.org/10.1016/j.lmot.2013.04.002.
  27. Manrique H.M., Völter C.J., Call J., Repeated innovation in great apes. Anim.Behav. 2013. 85: 195–202.
  28. Marshall-Pescini S., Virányi Z., Kubinyi E., Range F. Motivational factors underlying problem solving: comparing wolf and dog puppies’ explorative and neophobic behaviors at 5, 6, and 8 weeks of age. Frontiers in psychology. 2017. 8: 180. http://doi.org/10.3389/fpsyg.2017.00180
  29. Morand-Ferron J., Quinn J.L. Larger groups of passerines are more efficient problem solvers in the wild. Proc. Natl. Acad. Sci. U.S.A. 2011. 108: 15898–15903. http://doi.org/10.1073/pnas.1111560108
  30. Morand-Ferron J., Cole E.F., Rawles J.E.C., Quinn J.L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 2011. 22: 1241–1248. http://doi.org/10.1093/beheco/arr120
  31. Osthaus B., Marlow D., Ducat P. Minding the gap: spatial perseveration error in dogs. Anim. Cogn. 2010. 13 (6): 881–885.
  32. Osthaus B., Proops L., Hocking I., Burden F. Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Anim. Cogn. 2013. 16 (2): 301–305.
  33. Parr T., Friston K.J. Working memory, attention, and salience in active inference. Scientific reports. 2017. 7 (1): 1–21.
  34. Pearson J.M., Watson K.K., Platt M.L. Decision making: the neuroethological turn Neuron. 2014. 82 (5): 950–965.
  35. Petrazzini M., Wynne C. What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behav. Proc. 2016. 122: 90–97.
  36. Petrazzini M., Wynne C. Quantity discrimination in canids: dogs (Canis familiaris) and wolves (Canis lupus) compared. Behav. Proc. 2017. 144: 89–92. http://doi.org/10.1016/j.beproc.2017.09.003.
  37. Pezzulo G., Rigoli F., Chersi F. The mixed instrumental controller: using value of information to combine habitual choice and mental simulation. Front.Psychol. 2013. 4: 92.
  38. Pezzulo G., Rigoli F., Friston K. Active inference, homeostatic regulation and adaptive behavioural control. Progress in neurobiology. 2015. 134: 17–35.
  39. Protopopova A., Hall N.J., Wynne C.D. Association between increased behavioral persistence and stereotypy in the pet dog. Behavioural processes. 2014. 106: 77–81.
  40. Range F., Jenikejew J., Schröder I., Virányi Z.Difference in quantity discrimination in dogs and wolves. Froint. Psychol. 2014. 5: 1299. http://doi.org/10.3389/fpsyg.2014.01299.
  41. Rao A., Bernasconi L., Lazzaroni M., Marshall-Pescini S., Range F. Differences in persistence between dogs and wolves in an unsolvable task in the absence of humans. PeerJ. 2018. V. 6. e5944.
  42. Shettleworth S.J. Cognition, evolution, and behavior. Oxford: Oxford University Press. 2010.
  43. Thornton A., Samson J. Innovative problem solving in wild meerkats. Anim. Behav. 2012. 83 (6): 1459–1468. 10.1016/j.anbehav.2012.03.018 10.1016/j.anbehav.2012.03.018' target='_blank'>http://doi: 10.1016/j.anbehav.2012.03.018
  44. Trut L.N. Early canid domestication: the farm-fox experiment. American Scientist. 1999. 87 (2): 160–169.
  45. Trut L.N., Oskina I., Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. BioEssays. 2009. 31 (3): 349–360.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of variants of research behavior, used by foxes toward new object (pedal) during two minutes of test. Mann–Whitney U test: *** р ≤ 0.001 in comparison with aggressive and unselected foxes.

Download (908KB)
3. Fig. 2. The number of variants food-procuring behavior used by foxes at the test of attenuation of focus attention. Mann–Whitney U test: * р ≤ 0.05 in comparison with aggressive foxes.

Download (1MB)
4. Fig. 3. The number of glances directed by fox on groove of the experimental setup at the test of attenuation of focus attention. Mann–Whitney U test: *** р ≤ 0.001 in comparison with the second part of the test.

Download (961KB)
5. Fig. 4. The duration of absence of motor activity (the fox sits or lies away from the feeder). Mann_Whitney U test: ### р ≤ 0.001 in comparison with the first part of the test; # р ≤ 0.05 in comparison with aggressive foxes.

Download (630KB)

Copyright (c) 2024 Russian Academy of Sciences