Влияет ли длительный отбор по реакциям на человека на особенности процесса принятия решения у лисиц при научении?
- Авторы: Мухамедшина И.А.1, Харламова А.В.1
-
Учреждения:
- Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук” (ИЦиГ СО РАН)
- Выпуск: Том 74, № 3 (2024)
- Страницы: 324-335
- Раздел: ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПОВЕДЕНИЯ ЖИВОТНЫХ: ВОСПРИЯТИЕ ВНЕШНИХ СТИМУЛОВ, ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ, ОБУЧЕНИЕ И ПАМЯТЬ
- URL: https://cardiosomatics.orscience.ru/0044-4677/article/view/652091
- DOI: https://doi.org/10.31857/S0044467724030061
- ID: 652091
Цитировать
Аннотация
В настоящей работе исследовалось поведение лисиц, прошедших длительный отбор на экспериментальной базе ИЦиГ СО РАН в двух контрастных направлениях – на доместикационное и агрессивное поведение по отношению к человеку. В качестве контроля нами были использованы неселекционируемые по поведению лисицы, разводимые на экспериментальной базе ИЦиГ СО РАН. Обсуждаются особенности исследовательской активности лисиц при предъявлении им нового объекта, помещенного в домашнюю клетку, а также поведение лисиц в тесте на угашение навыка фокусировки взгляда на источнике пищевого подкрепления. Доместицированные лисицы оказались менее склонны к неофобии по сравнению с другими протестированными нами группами. Исследовательская активность ручных лисиц отличалась большим разнообразием моторных реакций по сравнению с агрессивными и неселекционируемыми. В тесте на угашение навыка фокусировки взгляда ручные лисицы использовали большее количество различных действий по сравнению с другими исследованными группами. При помещении в новую обстановку лисята из доместицируемой популяции находили разнообразные способы преодоления преграды в процессе следования за человеком. На основе этих данных обсуждаются особенности процесса принятия решения у лисиц.
Ключевые слова
Полный текст

Об авторах
И. А. Мухамедшина
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук” (ИЦиГ СО РАН)
Автор, ответственный за переписку.
Email: aden_66@mail.ru
Россия, Новосибирск
А. В. Харламова
Федеральное государственное бюджетное научное учреждение “Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук” (ИЦиГ СО РАН)
Email: kharlam@bionet.nsc.ru
Россия, Новосибирск
Список литературы
- Беляев Д.К. Современная наука и проблемы исследования человека. Вопр. философии. 1981. 3: 3–16.
- Васильева Л.Л. Анализ эффекта доместикации в изменении способности серебристо-черных лисиц (Vulpes vulpes) к обучению Эволюционно-генетические и генетико-физиологические аспекты доместикации пушных зверей. Новосибирск. 1991а. 57–69.
- Васильева Л.Л. Феногенетический анализ поведения серебристо-черных лисиц (Vulpes vulpes) при ослаблении эффективности отбора на доместикацию. Дисс. … к.б.н. Новосибирск. ИЦиГ СО РАН. 1991б. 184 с.
- Зорина З.А.Полетаева И.И. Элементарное мышление животных: Учеб. пособие по ВНД и зоопсихологии. 2003.
- Князева В.В. К теории понятия “вариативное мышление”. Вестник Оренбургского государственного педагогического университета. 2008. 1: 96–109.
- Криволапчук Н.Д. Прикладная психология собаки. Ростов-на-Дону: Феникс. 2008. 558 с.
- Крушинский Л.В. Формирование поведения животных в норме и патологии. Издательство Московского университета. 1960. 263 с.
- Мухамедшина И.А., Харламова А.В., Трут Л.Н. Изменяет ли отбор лисиц на доместикацию и агрессивность их способность концентрировать внимание и формировать двигательный навык? Журн. высш. нервн. деят. им. И.П. Павлова. 2014. 64 (5): 521–530. http://doi.org/10.7868/S0044467714050086
- Мухамедшина И.А., Харламова А.В., Трут Л.Н. Некоторые особенности высшей нервной деятельности лисиц и влияние на них отбора по социальным реакциям на человека. Журн. высш. нервн. деят. им. И.П.Павлова. 2019а. 69 (1): 88–97. http://doi.org/10.1134/S0044467719010076
- Мухамедшина И.А., Харламова А.В., Трут Л.Н. Поведение доместицируемых и агрессивных лисиц в ситуации выбора между разными количествами кусочков пищи. Журн. высш. нервн. деят. им. И.П.Павлова. 2019б. 69 (5): 590–600. http://doi.org/10.1134/S0044467719050083
- Трут Л.Н., Харламова А.В., Владимирова А.В., Гербек Ю.Э. Об отборе лисиц на агрессивность и его коррелированных последствиях. Вавиловский журнал генетики и селекции. 2017. 21 (4): 392–401. http://doi.org/10.18699/VJ17.257
- Alagoz O., Hsu H., Schaefer A.J., Roberts M.S.Markov decision processes: a tool for sequential decision making under uncertainty. Med. Decis. Making 2010. 30 (4): 474–483. http://doi.org/10.1177/0272989X09353194
- Balleine B.W., Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 1998. 37 (4–5): 407–419.
- Banszegi O., Urrutia A., Szenczi P., Hudson R. More or less: spontaneous quantity discrimination in the domestic cat. Anim. Cogn. 2016. 19 (5): 879–888 http://doi.org/10.1007/s10071–016–0985–2
- Benson-Amram S., Holekamp K.E. Innovative problem solving by wild spotted hyenas. Proceedings of the Royal Society B: Biological Sciences. 2012. 279 (1744): 4087–4095. http://doi.org/10.1098/rspb.2012.1450
- Charnov E.L. Optimal foraging, the marginal value theorem. Theoretical Population Biology. 1976. 9: 129–136.
- Dezfouli A., Balleine B.W. Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized. PLoS Comput. Biol. 2013. 9 (12): e1003364
- Dolan R.J., Dayan P. Goals and habits in the brain. Neuron 2013. 80 (2): 12–325 http://doi.org/10.1016/j.neuron.2013.09.007
- Friston K., FitzGerald T., Rigoli F., Schwartenbeck P., O’Doherty J., Pezzulo G. Active inference and learning. Neuroscience & Biobehavioral Reviews. 2016. 68: 862–879. http://doi.org/10.1016/j.neubiorev.2016.06.022
- Friston K.J. Active inference and cognitive consistency. Psychological inquiry. 2018. V. 29, №. 2. P. 67–73. http://doi.org/10.1080/1047840X.2018.1480693
- Fudenberg D., Newey W., Strack P., Strzalecki T. Testing the drift-diffusion model. Proceedings of the National Academy of Sciences. 2020. V. 117 (52): 33141–33148.
- Griffin A.S., Guez D. Innovation and problem solving: a review of common mechanisms. Behavioural Processes. 2014. 109: 121–134. http://doi.org/10.1016/j.beproc.2014.08.027
- Hare B., Plyusnina I., Ignacio N., Schepina O., Stepika A., Wrangham R., Trut L.Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Current Biology. 2005. 15 (3): 226–230.
- Keramati M., Dezfouli A., Piray P. Speed/accuracy trade-off between the habitual and the goal-directed processes. PLoS Comput. Biol. 2011. 7 (5): e1002055.
- Lutz C., Tiefenbacher Meyer J., Novak M.S., Extinction deficits in male rhesus macaques with a history of self‐injurious behavior. American Journal of Primatology: Official Journal of the American Society of Primatologists. 2004. 63 (2): P. 41–48.
- Macpherson K., Roberts W. Can dogs count? Learning and Motivation. 2013. (44) 4: 241–251. http://doi.org/10.1016/j.lmot.2013.04.002.
- Manrique H.M., Völter C.J., Call J., Repeated innovation in great apes. Anim.Behav. 2013. 85: 195–202.
- Marshall-Pescini S., Virányi Z., Kubinyi E., Range F. Motivational factors underlying problem solving: comparing wolf and dog puppies’ explorative and neophobic behaviors at 5, 6, and 8 weeks of age. Frontiers in psychology. 2017. 8: 180. http://doi.org/10.3389/fpsyg.2017.00180
- Morand-Ferron J., Quinn J.L. Larger groups of passerines are more efficient problem solvers in the wild. Proc. Natl. Acad. Sci. U.S.A. 2011. 108: 15898–15903. http://doi.org/10.1073/pnas.1111560108
- Morand-Ferron J., Cole E.F., Rawles J.E.C., Quinn J.L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 2011. 22: 1241–1248. http://doi.org/10.1093/beheco/arr120
- Osthaus B., Marlow D., Ducat P. Minding the gap: spatial perseveration error in dogs. Anim. Cogn. 2010. 13 (6): 881–885.
- Osthaus B., Proops L., Hocking I., Burden F. Spatial cognition and perseveration by horses, donkeys and mules in a simple A-not-B detour task. Anim. Cogn. 2013. 16 (2): 301–305.
- Parr T., Friston K.J. Working memory, attention, and salience in active inference. Scientific reports. 2017. 7 (1): 1–21.
- Pearson J.M., Watson K.K., Platt M.L. Decision making: the neuroethological turn Neuron. 2014. 82 (5): 950–965.
- Petrazzini M., Wynne C. What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behav. Proc. 2016. 122: 90–97.
- Petrazzini M., Wynne C. Quantity discrimination in canids: dogs (Canis familiaris) and wolves (Canis lupus) compared. Behav. Proc. 2017. 144: 89–92. http://doi.org/10.1016/j.beproc.2017.09.003.
- Pezzulo G., Rigoli F., Chersi F. The mixed instrumental controller: using value of information to combine habitual choice and mental simulation. Front.Psychol. 2013. 4: 92.
- Pezzulo G., Rigoli F., Friston K. Active inference, homeostatic regulation and adaptive behavioural control. Progress in neurobiology. 2015. 134: 17–35.
- Protopopova A., Hall N.J., Wynne C.D. Association between increased behavioral persistence and stereotypy in the pet dog. Behavioural processes. 2014. 106: 77–81.
- Range F., Jenikejew J., Schröder I., Virányi Z.Difference in quantity discrimination in dogs and wolves. Froint. Psychol. 2014. 5: 1299. http://doi.org/10.3389/fpsyg.2014.01299.
- Rao A., Bernasconi L., Lazzaroni M., Marshall-Pescini S., Range F. Differences in persistence between dogs and wolves in an unsolvable task in the absence of humans. PeerJ. 2018. V. 6. e5944.
- Shettleworth S.J. Cognition, evolution, and behavior. Oxford: Oxford University Press. 2010.
- Thornton A., Samson J. Innovative problem solving in wild meerkats. Anim. Behav. 2012. 83 (6): 1459–1468. 10.1016/j.anbehav.2012.03.018 10.1016/j.anbehav.2012.03.018' target='_blank'>http://doi: 10.1016/j.anbehav.2012.03.018
- Trut L.N. Early canid domestication: the farm-fox experiment. American Scientist. 1999. 87 (2): 160–169.
- Trut L.N., Oskina I., Kharlamova A. Animal evolution during domestication: the domesticated fox as a model. BioEssays. 2009. 31 (3): 349–360.
Дополнительные файлы
