Lower limb muscle activity during neurointerface control: neurointerface based on motor imagery of walking

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The question of the activity of muscles that provide the realization of imaginary movement is essential in the rehabilitation of motor disorders using neurointerfaces. The literature data on this issue are contradictory. The paper analyzes the EMG activity of the shin and thigh muscles of 40 healthy volunteers when working with a neurointerface based on kinesthetic motor imagery of walking in place and supplemented with the «Biokin» robotic limb movement device (mechanotherapy), activated in case of successful motor imagery. It is shown that working with a neurointerface, on average for subjects, leads to an increase in muscle activity when motor imagery of walking compared to rest, and activation of the mechanical training device (AM) further increases muscle activity, with its effect being more pronounced in the muscles of the leg from which motor imagery of walking begins. The nature of muscle reactions to the task of motor imagery of walking is individual. AM when working with a neurointerface, the number of subjects with pronounced EMG activity increases, as does the number of significant correlations between the activity of the muscles of the lower limbs. Thus, the use of neurointerfaces based on motor imagery of walking and the addition of AM as feedback allows activating the muscles of the lower extremities, which is important in clinical practice in the rehabilitation of movements.

Full Text

Restricted Access

About the authors

E. V. Bobrova

Pavlov Institute of Physiology, Russian Academy of Sciences

Author for correspondence.
Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

V. V. Reshetnikova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

A. A. Grishin

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

E. A. Vershinina

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

I. N. Bogacheva

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

N. A. Chsherbakova

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

M. R. Isaev

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; Institute of Translational Medicine of Pirogov of Russian National Research Medical University

Email: eabobrovy@gmail.com
Russian Federation, Moscow; Moscow

P. D. Bobrov

Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences; Institute of Translational Medicine of Pirogov of Russian National Research Medical University

Email: eabobrovy@gmail.com
Russian Federation, Moscow; Moscow

Y. P. Gerasimenko

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: eabobrovy@gmail.com
Russian Federation, St. Petersburg

References

  1. Боброва Е.В., Решетникова В.В., Вершининa Е.А., Гришин А.А., Фролов А.А., Герасименко Ю.П. Межполушарная асимметрия и личностные характеристики пользователя мозг-компьютерного интерфейса при воображении движений рук. ДАН. 2020. 495(6): 558–561.
  2. Боброва Е.В., Решетникова В.В., Вершинина Е.А., Гришин А.А., Исаев М.Р., Бобров П.Д., Герасименко Ю.П. Зависимость обучения управлению мозг-компьютерным интерфейсом от личностных характеристик. Доклады РАН. Науки о жизни. 2022. 507(1): 68–73.
  3. Боброва Е.В., Решетникова В.В., Волкова К.В., Фролов А.А. Влияние эмоциональной устойчивости на успешность обучения управлению системой «интерфейс мозг-компьютер». Журнал высш.нервн. деятельности им. И.П.Павлова. 2017. 67 (4): 485–492.
  4. Боброва Е.В., Решетникова В.В., Гришин А.А., Вершинина Е.А., Исаев М.Р., Пляченко Д.Р., Бобров П.Д., Герасименко Ю.П. Анализ мозговой и мышечной активности при управлении кортико-спинальным нейроинтерфейсом. Журнал высш.нервн. деятельности им. И.П.Павлова. 2023. 73(4): 510–523.
  5. Боброва Е.В., Решетникова В.В., Фролов А.А., Герасименко Ю.П. Воображение движений нижних конечностей для управления системами «интерфейс мозг-компьютер». Журнал высш.нервн. деятельности им. И.П. Павлова. 2019. 69(5): 529–540.
  6. Моисеев С.А., Городничев Р.М. Пространственно-временные паттерны кортико-мышечного взаимодействия при локомоции. Журнал высш.нервн. деятельности им. И.П.Павлова. 2023. 73(5): 666–679.
  7. Моисеев С.А. Пространственно-временные паттерны межмышечного взаимодействия при локомоциях, вызванных чрескожной электрической стимуляцией спинного мозга. Ж. эвол. биохим. и физиол. 2022. 58(6): 549–557.
  8. Решетникова В.В., Боброва Е.В., Вершинина Е.А., Гришин А.А., Фролов А.А., Герасименко Ю.П. Зависимость успешности воображения движений правой и левой руки от личностных характеристик пользователей. Журнал высш.нервн. деятельности им. И.П.Павлова.. 2021. 71(6): 830–839.
  9. Baniqued P.D.E., Stanyer E.C., Awais M., Alazmani A., Jackson A.E., Mon-Williams M.A., Mushtaq F., Holt R.J. Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J Neuroeng Rehabil. 2021. 18(1): 15.
  10. Barria P., Pino A., Tovar N., Gomez-Vargas D., Baleta K., Díaz C.A.R., Múnera M., Cifuentes C.A. BCI-based control for ankle exoskeleton T-FLEX: Comparison of visual and haptic stimuli with stroke survivors. Sensors. 2021. 21: 6431.
  11. Belda-Lois J.-M., Mena-del Horno S., Bermejo-Bosch I., Moreno J.C., Pons J.L., Farina D., Iosa M., Molinari M., Tamburella F., Ramos A., Caria A., Solis- Escalante T., Brunner C., Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 2011. 8: 66.
  12. Biswas P., Dodakian L., Wang P.T., Johnson C.A., See J., Chan V., Chou C., Lazouras W., McKenzie A.L., Reinkensmeyer D.J., Nguyen D.V., Cramer S.C., Do A.H., Nenadic Z. A single-center, assessor-blinded, randomized controlled clinical trial to test the safety and efficacy of a novel brain-computer interface controlled functional electrical stimulation (BCI-FES) intervention for gait rehabilitation in the chronic stroke population. BMC Neurol. 2024. 24(1): 200.
  13. Bobrova E.V., Reshetnikova V.V., Vershinina E.A., Grishin A.A., Bobrov P.D., Frolov A.A., Gerasimenko Y.P. Success of hand movement imagination depends on personality traits, brain asymmetry, and degree of handedness. Brain Sciences. 2021. 11: 853.
  14. Carrere L.C., Taborda M., Ballario C., Tabernig C. Effects of brain-computer interface with functional electrical stimulation for gait rehabilitation in multiple sclerosis patients: preliminary findings in gait speed and event-related desynchronization onset latency. J Neural Eng. 2021.18(6): 066023.
  15. Cervera M.A., Soekadar S.R., Ushiba J., Millán J.D.R., Liu M., Birbaumer N., Garipelli G. Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann Clin Transl Neurol. 2018. 5(5): 651–663.
  16. Cheron G., Duvinage M., De Saedeleer C., Castermans T., Bengoetxea A., Petieau M., Seetharaman K., Hoellinger T., Dan B., Dutoit T., Sylos L.F., Lacquaniti F., Ivanenko Y. From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation. Neural Plast. 2012. 2012: 375148.
  17. Choi J., Kim K.T., Jeong J.H., Kim L., Lee S.J., Kim H. Developing a motor imagery-based real-time asynchronous hybrid BCI controller for a lower-limb exoskeleton. Sensors (Basel). 2020. 20(24): 7309.
  18. Choi J., Kim K.T., Jeong J.H., Kim L., Lee S.J., Kim H. Developing a motor imagery-based real-time asynchronous hybrid BCI controller for a lower-limb exoskeleton. Sensors. 2020. 20: 7309.
  19. Chung E., Lee B.H., Hwang S. Therapeutic effects of brain-computer interface-controlled functional electrical stimulation training on balance and gait performance for stroke: A pilot randomized controlled trial. Medicine (Baltimore). 2020. 99(51): e22612.
  20. Colucci A., Vermehren M., Cavallo A., Angerhöfer C., Peekhaus N., Zollo L., Kim W.S., Paik N.J., Soekadar S.R. Brain-computer interface-controlled exoskeletons in clinical neurorehabilitation: ready or not? Neurorehabil Neural Repair. 2020. 36(12): 747–756.
  21. Decety J., Jeannerod M., Durozard D., Baverel G. Central activation of autonomic effectors during mental simulation of motor actions in man. J Physiol. 1993. 461: 549–563.
  22. Dickstein R., Gazit-Grunwald M., Plax M., Dunsky A., Marcovitz E. EMG activity in selected target muscles during imagery rising on tiptoes in healthy adults and poststroke hemiparetic patients. J. Mot. Behav. 2005. 37: 475–483.
  23. Do A.H., Wang P.T., King C.E., Abiri A., Nenadic Z. Brain-computer interface controlled functional electrical stimulation system for ankle movement. J. Neuroeng. Rehabil. 2011. 8: 49.
  24. Do A.H., Wang P.T., King C.E., Chun S.N., Nenadic Z. Brain-computer interface controlled robotic gait orthosis. Journal of NeuroEngineering and Rehabilitation. 2013. 10: 111
  25. Donati A., Shokur S., Morya E., Campos D., Moioli R., Gitti C., Augusto P., Tripodi S., Pires C., Pereira G., Brasil F., Gallo S., Lin A., Takigami A., Aratanha M., Bleuler H., Cheng G., Rudolph A., Nicolelis M. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients. Scientific Reports. 2016. 6: 30383.
  26. Epstein M.L. The relationship of mental imagery and mental rehearsal to performance of a motor task. Journal of Sport Psychology. 1980. 2(3): 211–220.
  27. Ferrero L., Ortiz M., Quiles V., Iáñez E., Azorín J.M. Improving motor imagery of gait on a brain–computer interface by means of virtual reality: A case of study. IEEE Access. 2021. 9: 49121–49130.
  28. Ferrero L., Quiles V., Ortiz M., Iáñez E., Gil-Agudo Á., Azorín J.M. Brain-computer interface enhanced by virtual reality training for controlling a lower limb exoskeleton. iScience. 2023. 26(5): 106675.
  29. Gandevia S.C., Wilson L.R., Inglis J.T., Burke D. Mental rehearsal of motor tasks recruits α-motoneurones but fails to recruit human fusimotor neurones selectively. The Journal of Physiology. 1997. 505: 259–266.
  30. García-Cossio E., Severens M., Nienhuis B., Duysens J., Desain P., Keijsers N., Farquhar J. Decoding sensorimotor rhythms during robotic-assisted treadmill walking for brain computer interface (BCI) applications. PLoS One. 2015. 10(12): e0137910.
  31. Geiger D.E., Behrendt F., Schuster-Amft C. EMG muscle activation pattern of four lower extremity muscles during stair climbing, motor imagery, and robot-assisted stepping: a cross-sectional study in healthy individuals. Biomed Res Int. 2019. 2019: 9351689.
  32. Gentili R., Papaxanthis C., Pozzo T. Improvement and generalization of arm motor performance through imagery practice. Neuroscience. 2006. 137: 761–772.
  33. Gerardin E., Sirigu A., Lehéricy S., Poline J.B., Gaymard B., Marsault C., Agid Y., Le Bihan D. Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex. 2000. 10(11): 1093–1104.
  34. Guillot A., Lebon F., Rouffet D., Champely S., Doyon J., Collet C. Muscular responses during motor imagery as a function of muscle contraction types. International Journal of Psychophysiology. 2007. 66(1): 18–27.
  35. Hashimoto R., Rothwell J. Dynamic changes in corticospinal excitability during motor imagery. Exp Brain Res. 1999. 125: 75–81.
  36. Herbert R.D., Dean C., Gandevia S.C. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol. Scand. 1998. 163: 361–368.
  37. Ivanenko Y.P., Cappellini G., Dominici N., Poppele R.E., Lacquaniti F. Modular control of limb movements during human locomotion. J Neurosci. 2007. 27(41): 11149–11161.
  38. Jackson P.L., Lafleur M.F., Malouin F., Richards C.L., Doyon J. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery. Neuroimage. 2003. 20: 1171–1180.
  39. Jacobson E. Electrical measurements of neuromuscular states during mental activities. Am. J. Physiol. 1931. 96: 115–121.
  40. Jacobson E. Electrophysiology of mental activities. Am. J. Psychol. 1932. 44: 677–694.
  41. Jeunet C., Glize B., McGonigal A., Batail J.-M., Micoulaud-Franchi J.-A. Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical background, applications and prospects. Neurophysiologie Clinique. 2019. 49: 125–136.
  42. Jeunet C., N’Kaoua B., Lotte F. Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. Prog. Brain. Res. 2016. 228: 3–35.
  43. Khan H., Naseer N., Yazidi A., Eide P.K., Hassan H.W., Mirtaheri P. Analysis of human gait using hybrid EEG-fNIRS-Based BCI system: A review. Front Hum Neurosci. 2021. 14: 613254.
  44. King C.E., Wang P.T., Chui L.A., Do A.H., Nenadic Z. Operation of a brain-computer interface walking simulator for individuals with spinal cord injury. Journal of NeuroEngineering and Rehabilitation. 2013. 10: 77.
  45. King C.E., Wang P.T., McCrimmon C.M., Chou C.C.Y., Do A.H., Nenadic Z. Brain-computer interface driven functional electrical stimulation system for overground walking in spinal cord injury participant. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014. 2014: 1238–1242.
  46. King C.E., Wang P.T., McCrimmon C.M., Chou C.C.Y., Do A.H., Nenadic Z. The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia. J. Neuroeng. Rehabil. 2015. 12: 80.
  47. Kucyi A., Moayedi M., Weissman-Fogel I., Hodaie M., Davis K.D. Hemispheric asymmetry in white matter connectivity of the temporoparietal junction with the insula and prefrontal cortex. PLoS One. 2012. 7(4): e35589.
  48. Lafleur M.F., Jackson P.L., Malouin F., Richards C.L., Evans A.C., Doyon J. Motor learning procedures parallel dynamic functional changes during the execution and the imagination of sequential foot movements. Neuroimage. 2002. 16: 142–157.
  49. Lebon F., Rouffet D., Collet C., Guillot A. Modulation of EMG power spectrum frequency during motor imagery. Neuroscience Letters. 2008. 435(3): 181–185.
  50. Liang S., Xu J., Wang L., Zhao G. An investigation into the bilateral functional differences of the lower limb muscles in standing and walking. PeerJ. 2016. 4: e2315.
  51. Lim V.K., Polych M.A., Holländer A., Byblow W.D., Kirk I.J., Hamm J.P. Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson’s disease. Clinical Neurophysiology. 2006. 117: 2308–2314.
  52. Lotze M., Montoya P., Erb M., Hulsmann E., Flor H., Klose U. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J. Cogn. Neurosci. 1999. 11: 491–501.
  53. McCrimmon C.M., King C.E., Wang P.T., Cramer S.C., Nenadic Z., Do A.H. Brain-controlled functional electrical stimulation for lower-limb motor recovery in stroke survivors. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014. 2014: 1247–1250.
  54. McCrimmon C.M., King C.E., Wang P.T., Cramer S.C., Nenadic Z., Do A.H. Brain-controlled functional electrical stimulation therapy for gait rehabilitation after stroke: a safety study. Journal of NeuroEngineering and Rehabilitation. 2015. 12: 57.
  55. Mrachacz-Kersting N., Jiang N., Stevenson A.J.T., Niazi I.K., Kostic V., Pavlovic A., Radovanovic S., Djuric-Jovicic M., Agosta F., Dremstrup K., Farina D. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 2016. 115(3): 1410–1421.
  56. Mulder T., de Vries S., Zijlstra S. Observation, imagination and execution of an effortful movement: more evidence for a central explanation of motor imagery. Exp. Brain Res. 2005. 163: 344–351.
  57. Mulder T., Zijlstra S., Zijlstra W., Hochstenbach J. The role of motor imagery in learning a totally novel movement. Exp. Brain Res. 2004. 154: 211–217.
  58. Murphy T.H., Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009. 10: 861–872.
  59. Naito E., Kochiyama T., Kitada R., Nakamura S., Matsumura M., Yonekura Y., Sadato N. Internally simulated movement sensations during motor imagery activate cortical areas and the cerebellum. J. Neurosci. 2002. 22: 3683–3691.
  60. Nenadic Z. Brain-computer interfaces for human gait restoration. Control Theory Technol. 2021. 19: 516–528.
  61. Personnier P., Paizis C., Ballay Y., Papaxanthis C. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements. Behav Brain Res. 2008. 186(2): 273–283.
  62. Ranganathan V.K., Siemionow V., Liu J.Z., Sahgal V., Yue G.H. From mental power to muscle power – gaining strength by using mind. Neuropsychologia. 2004. 42: 944–956.
  63. Ren S., Wang W., Hou Z.-G., Liang X., Wang J., Shi W. Enhanced motor imagery based brain-computer interface via FES and VR for lower limbs. IEEE TNSRE. 2020. 28(8): 1846–1855.
  64. Sebastián-Romagosa M., Cho W., Ortner R., Sieghartsleitner S., Von Oertzen T.J., Kamada K., Laureys S., Allison B.Z., Guger C. Brain–computer interface treatment for gait rehabilitation in stroke patients. Front. Neurosci. 2023. 17: 1256077.
  65. Shaw W.A. The distribution of muscular action potentials during imaging. Psychol. Rec. 1938. 2: 195–216.
  66. Takahashi M., Takeda K., Otaka Y., Osu R., Hanakawa T., Gouko M., Ito K. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: A feasibility study. Journal of NeuroEngineering and Rehabilitation. 2012. 9: 56.
  67. van der Meulen M., Allali G., Rieger S. W., Rieger S.W., Assal F., Vuilleumier P. The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Human Brain Mapping. 2014. 35(2): 455–470.
  68. Villiger M., Estevez N., Hepp-Reymond M.-C., Kiper D., Kollias S., Eng K., Hotz-Boendermaker S.S. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements. 2013. PLoS ONE. 8(8): e72403.
  69. Vossel S., Geng J.J., Fink G.R. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014. 20(2): 150–159.
  70. Wang P.T., King C.E., Chui L.A., Nenadic Z., Do A.H. BCI controlled walking simulator for a BCI driven FES device. RESNA Annual Conference. Las Vegas, Nevada. June 26 – 30, 2010.
  71. Wehner T., Vogt S., Stadler M. Task-specific EMG-characteristics during mental training. Psychol Res. 1984. 46(4): 389–401.
  72. Xu R., Jiang N., Mrachacz-Kersting N., Lin C., As G., Moreno J.C., Pons J.L., Member S., Dremstrup K., Farina D. A closed-loop brain–computer interface triggering an active ankle–foot orthosis for inducing cortical neural plasticity. IEEE transactions on biomedical engineering. 2014. 61(7): 2092–2101.
  73. Yahagi S., Shimura K., Kasai T. An increase in cortical excitability with no change in spinal excitability during motor imagery. Percept. Mot. Skills. 1996. 83: 288–290.
  74. Yue G., Cole K.J. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle. J. Neurophysiol. 1992. 67: 1114–1123.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The scheme of operation of the complex based on a neurointerface with visual feedback, supplemented by the «Biokin» mechanical training device.

Download (103KB)
3. Fig. 2. Examples of EMG activity of muscles of one of the subjects during motor imagery of walking under conditions of neurointerface control without (а) and with (б) activation of the mechanical training device. By abscissa: time. By ordinate: first four signals – EMG activity of muscles of the right leg (RL); next four signals – of the left leg (LL); below – trajectory of movements during mechanotherapy in the ankle joint (thin line), in the knee joint (bold line) RL and LL; at the bottom – instructions to the subject (bold line: low step – remain at rest, medium step – motor imagery of walking with LL, high step – motor imagery of walking with RL); current value of accuracy of brain signal classification (thin line).

Download (469KB)
4. Fig. 3. Individual characteristics of EMG activity of all studied muscles of the lower extremities during motor imagery using a neurointerface with and without activation of the mechanical training device. Rows: subjects, columns: muscles. Black rectangles indicate the presence of burst activity, light gray rectangles indicate tonic activity, dark gray rectangles indicate both burst and tonic activity. Bottom row: number of subjects who had any type of EMG activity (burst and/or tonic) in the corresponding muscle.

Download (504KB)
5. Fig. 4. Average EMG activity of the muscles (μV) of the tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris on the right leg (ПН) and left one at rest (gray columns) and during motor imagery of walking beginning from ПН (black columns) or from ЛН (white columns) when controlling the neurointerface with and without activation of the mechanical training device. The asterisk (*) indicates differences between the EMG activity values that are significant when introducing the Bonferroni correction; in the case of a tendency towards significance, the p value is indicated.

Download (561KB)
6. Fig. 5. Pleiades reflecting the results of factor and correlation (by Spearman criterion) analysis of the average EMG activity of the tibialis anterior (TA), gastrocnemius (Gs), vastus lateralis (VL) and biceps femoris (BF) muscles of the right (R) and left (L) legs during control of the neurointerface based on motor imagery of walking, beginning with the left or right leg, with and without activation of the mechanical training device. The muscle names in bold are included in the 1st factor determined by factor analysis, in italics – in the 2nd factor. Black solid lines reflect significant correlations between the EMG activity of the muscles included in the 1st factor, black dotted lines – included in the 2nd factor, gray dashed-dotted lines – not included in any of the components. The thickness of the lines reflects the value of the correlation coefficient (the higher it is, the thicker the line).

Download (369KB)

Copyright (c) 2024 Russian Academy of Sciences