PARADIGM CHANGE IN COGNITIVE SCIENCES
- Authors: Knyazev G.G.1
-
Affiliations:
- Federal State Budgetary Scientific Institution “Scientific Research Institute of Neurosciences and Medicine
- Issue: Vol 73, No 1 (2023)
- Pages: 102-123
- Section: ДИСКУССИОННЫЕ СТАТЬИ
- URL: https://cardiosomatics.orscience.ru/0044-4677/article/view/652056
- DOI: https://doi.org/10.31857/S0044467723010094
- EDN: https://elibrary.ru/GJJVJO
- ID: 652056
Cite item
Abstract
Since the 1950s, the dominant paradigm in the cognitive sciences has been cognitivism, which emerged as an alternative to behaviorism, and predominantly views cognitive processes as various kinds of “computations” similar to those performed by the computer. Despite significant advances made in the last quarter of the 20th century within this paradigm, it does not satisfy many scientists because it could not adequately explain some features of cognitive processes. Connectionism, which emerged somewhat later, recognizes the role of computational processes, but as their basis considers a neural network, which is a much better model of brain functioning than Turing-type computations. Neural networks, unlike the classical computer, demonstrate robustness and flexibility in the face of real-world problems, such as increased input noise, or blocked parts of the network. They are also well suited for tasks requiring the parallel resolution of multiple conflicting constraints. Despite this, the analogy between the functioning of the human brain and artificial neural networks is still limited due to radical differences in system design and associated capabilities. Parallel to the paradigms of cognitivism and connectionism, the notions that cognition is a consequence of purely biological processes of interaction between the organism and the environment have developed. These views, which have become increasingly popular in recent years, have taken shape in various currents of the so-called enactivism. This review compares the theoretical postulates of cognitivism, connectionism, and enactivism, as well as the predictive coding paradigm and the free energy principle.
About the authors
G. G. Knyazev
Federal State Budgetary Scientific Institution “Scientific Research Institute of Neurosciences and Medicine
Author for correspondence.
Email: knyazevgg@neuronm.ru
Russia,
Novosibirsk
References
- Князев Г.Г. Кодирование смысла в активности мозга. Журнал высшей нервной деятельности им. И.П.Павлова. 2022. В печати.
- Barlow H.B. The neuron doctrine in perception. In M. Gazzaniga (Ed.), The Cognitive Neurosciences. 1994. Boston: MIT Press.
- Bastos A.M., Usrey W.M., Adams R.A., Mangun G.R., Fries P., Friston K.J. Canonical microcircuits for predictive coding. Neuron. 2012. 76: 695–711.
- Block N. Psychologism and Behaviorism. Philosophical Review. 1981. 90: 5–43.
- Block N. Can the Mind Change the World? in Meaning and Method: Essays in Honor of Hilary Putnam. G. Boolos (ed.), 1990. Cambridge: Cambridge University Press.
- Block N., Fodor J. What Psychological States Are Not. The Philosophical Review. 1972. 81: 159–181.
- Broadbent D.E. Perception and Communication. 1958. New York: Pergamon Press.
- Brooks R.A. Intelligence without representation. Artificial Intelligence. 1991. 47 (1): 139–159.
- Buckner C., Garson J. Connectionism. The Stanford Encyclopedia of Philosophy. 2019. E.N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/fall2019/entries/connectionism/>.
- Calvo G.F. Connectionist Semantics and the Collateral Information Challenge. Mind & Language. 2003. 18 (1): 77–94.
- Calvo P., Symons J. The Architecture of Cognition: Rethinking Fodor and Pylyshyn’s Systematicity Challenge. 2014. Cambridge: MIT Press.
- Chalmers D.J. The Conscious Mind. 1996. Oxford University Press.
- Chemero A. Radical Embodied Cognitive Science. 2011. Cambridge, MA: MIT Press.
- Chomsky N. On Certain Formal Properties of Grammars. Information and Control. 1959. 2 (2): 137–167.
- Church A. An unsolvable problem of elementary number theory. American Journal of Mathematics. 1936. 58: 345–363.
- Clark A. Associative Engines: Connectionism, Concepts, and Representational Change. 1993. Cambridge, MA: MIT Press.
- Clark A. Spreading the joy? Why the machinery of consciousness is (probably) still in the head. Mind. 2009. 118 (472): 963–993.
- Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences. 2013. 36 (03), 181–204.
- Clark A., Toribio J. Doing without representing. Synthese. 1994. 101 (3): 401–434.
- Cover T., Thomas J. Elements of Information Theory. 2006. Hoboken: Wiley.
- Davis P. Information and the Nature of Reality. 2010. Cambridge, MA: MIT Press.
- Di Paolo A.E., Rhohde M., De Jaegher H. Horizons for the enactive mind: Values, social interaction, and play. In J. Stewart, O. Gapenne & E.A Di Paolo (eds.). Enaction: Toward a New Paradigm for Cognitive Science. 2014. Cambridge, MA: MIT Press.
- Downey A. It Just Doesn’t Feel Right: OCD and the ‘Scaling Up’ Problem. Phenomenology and the Cognitive Sciences. 2020. 19 (4): 705–727.
- Dretske F. Knowledge and the Flow of Information. 1981. Oxford: Blackwell.
- Dreyfus H. What Computers Still Can’t Do. 1992. Cambridge, MA: MIT Press.
- Elman J. Finding Structure in Time. Cognitive Science. 1990. 14: 179–211.
- Figdor C. Semantic Externalism and the Mechanics of Thought. Minds and Machines. 2009. 19: 1–24.
- Fodor J. The Language of Thought. 1975. New York: Thomas Y. Crowell.
- Fodor J. Methodological Solipsism Considered as a Research Strategy in Cognitive Psychology. Behavioral and Brain Science. 1980. 3: 63–73.
- Fodor J. Concepts. 1998. Oxford: Clarendon Press.
- Fodor J. The Mind Doesn’t Work That Way. 2000. Cambridge, MA: MIT Press.
- Fodor J. Reply to Steven Pinker ‘So How Does the Mind Work?’. Mind and Language. 2005. 20: 25–32.
- Fodor J., Lepore E. Holism: A Shopper’s Guide. 1992. Cambridge: Blackwell.
- Fodor J., McLaughlin B.P. Connectionism and the Problem of Systematicity: Why Smolensky’s Solution Doesn’t Work. Cognition. 1990. 35 (2): 183–204.
- Fodor J.A., Pylyshyn Z.W. Connectionism and Cognitive Architecture: A Critical Analysis. Cognition. 1988. 28 (1–2): 3–71.
- Friston K., Kilner J., Harrison L. A free energy principle for the brain. Journal of Physiology, Paris. 2006. 100 (1–3): 70–87.
- Gallagher S., Bower M. Making enactivism even more embodied. Avant: Trends in Interdisciplinary Studies. 2013. 2.
- Gallistel C.R., King A. Memory and the Computational Brain. 2009. Malden: Wiley-Blackwell.
- Gibson J.J. The Senses Considered as Perceptual Systems. 1966. Boston: Houghton Mifflin.
- Gibson J.J. The Ecological Approach to Visual Perception. 1979. Boston: Houghton Mifflin.
- Gleick J. The Information. 2011. Pantheon.
- Gödel K. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik. 1931. 38: 173–198.
- Goodman B., Flaxman S. European Union Regulations on Algorithmic Decision-Making and a ‘Right to Explanation’. AI Magazine. 2017. 38 (3): 50–57.
- Graves A., Wayne G., Danihelko I. Neural Turing Machines. arXiv preprint. 2014. arXiv:1410.5401.
- Heidegger M. Being and time. Translated by J. Macquarrie and E. Robinson. 1927/1962. Basil Blackwell: Oxford.
- Helmholtz H. von. Handbuch der Physiologischen Optik. 1867. Leipzig: Voss.
- Hilbert D., Ackermann W. Principles of Mathematical Logic. 1950. AMS Chelsea Publishing, Providence: Rhode Island, USA.
- Horgan T.E., Tienson J. Soft Laws. Midwest Studies in Philosophy. 1990. 15: 256–279.
- Horgan T.E., Tienson J.L. Cognitive systems as dynamic systems. Topoi. 1992. 11 (1): 27–43.
- Hutto D., Myin E. Radical Enactivism: Basic Minds Without Content. 2012. Cambridge, MA: MIT Press.
- Kahneman D., Tversky A. Prospect theory: An analysis of decision under risk. Econometrica. 1979. 47: 263–291.
- Kazez J. Computationalism and the Causal Role of Content. Philosophical Studies. 1995. 75: 231–260.
- Kirchhoff M.D., Robertson I. Enactivism and predictive processing: A non-representational view. Philosophical Explorations. 2018. 21(2): 264–281.
- Kogo N., Trengove C. Is predictive coding theory articulated enough to be testable? Frontiers in Computational Neuroscience. 2015. 9: 111.
- Krotov D., Hopfield J. Unsupervised Learning by Competing Hidden Units. Proceedings of the National Academy of Sciences, USA. 2019. 116: 7723–7731.
- Kwisthout J., van Rooij I. Computational Resource Demands of a Predictive Bayesian Brain. Computational Brain & Behavior. 2019. 3 (2): 174–188.
- LeCun Y., Bengio Y., Hinton G. Deep Learning. Nature. 2015. 521: 436–444.
- Lloyd S. Programming the Universe. 2007. Vintage.
- Lucas J.R. Minds, Machines, and Gödel. Philosophy. 1961. 36: 112–137.
- Marblestone A., Wayne G., Kording K. Toward an Integration of Deep Learning and Neuroscience. Frontiers in Computational Neuroscience. 2016. 10: 1–41.
- Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. 1982. San Francisco: W.H. Freeman.
- Maturana H.R., Varela F.J. Autopoiesis and cognition: the realization of the living. 1980. Kluwer: Dordrecht.
- McClelland J.L., Rumelhart D.E. An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review. 1981. 88 (5): 375–407.
- McCulloch W., Pitts W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics. 1943. 7: 115–133.
- Merleau-Ponty M. Phenomenology of perception. Translated by D.A. Landes. 1945/2012. Routledge: London.
- Morales J., Solovey G., Maniscalco B., Rahnev D., de Lange F., Lau H. Low attention impairs optimal incorporation of prior knowledge in perceptual decisions. Attention, Perception, and Psychophysics. 2015. 77: 2021–2036.
- Munz P. Philosophical Darwinism: On the Origin of Knowledge by Means of Natural Selection. 2002. Routledge: London.
- Murphy K. Machine Learning: A Probabilistic Perspective. 2012. Cambridge, MA: MIT Press.
- Nagel E., Newman J.R. Gödel’s Proof. 1958. New York: New York University Press.
- Newell A., Shaw J.C., Simon H.A. Elements of a Theory of Human Problem Solving. Psychological Review. 1958. 65 (3): 151–166.
- Nguyen A., Yosinski J., Clune J. Deep Neural Networks Are Easily Fooled: High Confidence Predictions for Unrecognizable Images. Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). 2015. 427–436.
- O’Regan J.K. Why red doesn’t sound like a bell. Explaining the feel of consciousness. 2011. Oxford University Press: Oxford.
- Orlandi N. Bayesian perception is ecological perception. Philosophical Topics. 2016. 44: 327–351.
- Penrose R. The Emperor’s New Mind: Concerning Computers, Minds and The Laws of Physics. 1989. Oxford University Press, UK.
- Pinker S., Prince A. On Language and Connectionism: Analysis of a Parallel Distributed Processing Model of Language Acquisition. Cognition. 1988. 28 (1–2): 73–193.
- Pozzi I., Bohté S., Roelfsema P. A Biologically Plausible Learning Rule for Deep Learning in the Brain. arXiv preprint. 2019. arXiv:1811.01768.
- Putnam H. Psychophysical Predicates. In Art, Mind, and Religion, W. Capitan and D. Merrill (eds), Pittsburgh: University of Pittsburgh Press. 1967, 429–440.
- Rescorla M.A. Realist Perspective on Bayesian Cognitive Science. In: T. Chan and A. Nes (Eds) Inference and Consciousness. 2019. Routledge: London.
- Rohde M. The scientist as observing subject. Enaction, Embodiment, Evolutionary Robotics: Simulation Models for a Post-Cognitivist Science of Mind. 2010. Atlantis Press. pp. 30.
- Rowlands M. The new science of the mind: from extended mind to embodied phenomenology. 2010. MIT Press: Cambridge.
- Rumelhart D., Hinton G., Williams R. Learning Representations by Back-propagating Errors. Nature. 1986. 323: 533–536.
- Rumelhart D., McClelland J., and the PDP Research Group. Parallel Distributed Processing. Vol. 1. 1986b. Cambridge: MIT Press.
- Sadler M., Regan N. Game Changer: AlphaZero’s Groundbreaking Chess Strategies and the Promise of AI. 2019. Alkmaar: New in Chess.
- Searle J. Minds, Brains and Programs. Behavioral and Brain Sciences. 1980. 3: 417–457.
- Searle J. Can Information Theory Explain Consciousness? The New York Review. 2013. 10.
- Seife C. Decoding the Universe. 2007. Penguin.
- Shapiro L. Embodied cognition. 2019. Routledge: London.
- Shapiro L., Spaulding S. Embodied Cognition. The Stanford Encyclopedia of Philosophy. 2021. E.N. Zalta (ed.), URL = <https://plato.stanford.edu/archives/win2021/entries/embodied-cognition/>.
- Silver D., Hubert T., Schrittwieser J., Antonoglou I., Lai M., Guez A., Lanctot M., Sifre L., Kumaran D., Graepel T., Lillicrap T., Simonyan K., Hassabis D. A General Reinforcement Learning Algorithm That Masters Chess, Shogi, and Go through Self-Play. Science. 2018. 362 (6419): 1140–1144.
- Sprevak M. Computation, Individuation, and the Received View on Representation. Studies in History and Philosophy of Science. 2010. 41: 260–270.
- Sternberg S. Memory-Scanning: Mental Processes Revealed by Reaction-Time Experiments. American Scientist. 1969. 57 (4): 421–457.
- Thompson E. Mind in Life: Biology, Phenomenology, and the Sciences of Mind. 2007. Cambridge, MA: Harvard University Press.
- Tversky A., Kahneman D. Extension versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment. Psychological Review. 1983. 90: 293–315.
- Turing A. On Computable Numbers, with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2. 1936. 42: 230–265.
- Turing A. Computing Machinery and Intelligence. Mind. 1950. 49: 433–460.
- Varela F.J., Thompson E., Rosch E. The embodied mind. 1991. MIT Press: Cambridge.
- Vedral V. Decoding Reality. 2010. Oxford University Press, UK.
- Von Glasersfeld E. Cognition, construction of knowledge and teaching. Synthese. 1989. 80 (1): 121–140.
- Ward D., Silverman D., Villalobos M. Introduction: The varieties of enactivism. Topoi. 2017. 36 (3): 365–375.
- Wermter S., Sun R. (eds.). Hybrid Neural Systems. (Lecture Notes in Computer Science 1778). 2000, Berlin, Heidelberg: Springer Berlin Heidelberg.
- Wheeler J.A. Information, physics, quantum: the search for links. Proceedings III International Symposium on Foundations of Quantum Mechanics, Tokyo. 1989, 354–368.
Supplementary files
