SYNTHESIS, MICROSTRUCTURE AND PROPERTIES OF CERAMICS (K0.5Na0.5) NBO3–SrZrO3 DOPED WITH LITHIUM FOTORIDE

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Single-phase ceramic samples of new compositions (1-x)(K0.5Na0.5) NbO3 – xSrZrO3 (x = 0–0.15), modified by the addition of 2 wt. % lithium fluoride LiF, were obtained by solid-phase synthesis and their crystal structure, microstructure, dielectric and nonlinear optical properties were studied. The formation of a phase with perovskite structure with pseudocubic unit cell in the modified samples was found. The formation of a finer-grained microstructure with increasing SrZrO3 content has been revealed. Segnetoelectric phase transitions have been confirmed by dielectric spectroscopy. Decrease in the temperature of phase transitions and weakening of nonlinear optical properties as the content of strontium zirconate in the samples increases were found.

作者简介

G. Kaleva

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: galina_kaleva@mail.ru
119991, Москва, Россия

E. Politova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

119991, Москва, Россия

A. Mosunov

Lomonosov Moscow State University

119991, Москва, Россия

N. Sadovskaya

Federal State Budgetary Institution “National Research Center “Kurchatov Institute”

119333, Москва, Россия

参考

  1. Valant M. // Progr. Mater. Science. 2012. V. 57. P. 980. https://doi.org/:‎10.1016/j.pmatsci.2012.02.001‎
  2. Bai Y., Han X., Ding K., Qiao L. // Energy Technol. 2017. V. 5. P. 703. https://doi.org/10.1002/ente.201600456
  3. Ozbolt M., Kitanovski A., Tusek J., Poredos A. // Int. J. Refrig. 2014. V. 40. P. 174. https://doi.org/10.1016/j.ijrefrig.2013.11.007
  4. Lu S.-G., Zhang Q. // Adv. Mater. 2009. V. 21. P. 1983. https://doi.org/10.1002/adma.200802902
  5. Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. // Acta Mater. 2017. V. 124. P. 120. https://doi.org/10.1016/j.actamat.2016.11.001
  6. Weyland F., Acosta M., Koruza J. et al. // Adv. Funct. Mater. 2016. V. 26. P. 7326. https://doi.org/10.1002/adfm.201602368
  7. Mischenko A.S., Zhang Q., Scott J.F. et al. // Science. 2006. V. 311. P. 1270. https://doi.org/10.1126/science.1123811
  8. Suchaneck G., Gerlach G. // Mater. Today: Proceed. 2016. V. 3. P. 622. https://doi.org/10.1016/j.matpr.2016.01.100
  9. Grünebohm A., Ma Y.B., Marathe M. et al. // Energy Technol. 2018. V. 6. P. 1491. https://doi.org/10.1002/ente.201800166
  10. Samantaray K.S., Amin R., Rini E. et al. // J. Alloys Compd. 2022. V. 903. Art. № 163837. https://doi.org/10.1016/j.jallcom.2022.163837
  11. Luo L., Jiang X., Zhang Y., Li K. // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
  12. Srikanth K., Vaish R. // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
  13. Kimmel A., Gindele O., Duffy D., Cohen R. // Appl. Phys. Lett. 2019. V. 115. Art. № 023902. https://doi.org/10.1063/1.5096592
  14. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Europ. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
  15. Yang Z., Du H., Jin L. and Poelman D. // J. Mater. Chem. A. 2021. V. 9. P. 18026. https://doi.org/10.1039/d1ta04504k
  16. Wu J. // J. Appl. Phys. 2020. V. 127 Art. № 190901. https://doi.org/10.1063/5.0006261
  17. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0
  18. Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  19. Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x
  20. Kumar R., Singh S. // J. Alloys Compd. 2017. V. 723. P. 589. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
  21. Liu Z., Fan H., Lei S. et al. // J. Eur. Ceram. Soc. 2017. V. 37. P. 115. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
  22. Kumar R., Singh S. // J. Alloys Compd. 2018. V. 764. P. 289. https://doi.org/10.1016/j.jallcom.2018.06.083
  23. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielect. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
  24. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984.
  25. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1109/JQE.1968.1075108.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025