SYNTHESIS, MICROSTRUCTURE AND PROPERTIES OF CERAMICS (K0.5Na0.5) NBO3–SrZrO3 DOPED WITH LITHIUM FOTORIDE
- 作者: Kaleva G.M.1, Politova E.D.1, Mosunov A.V.2, Sadovskaya N.V.3
-
隶属关系:
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Federal State Budgetary Institution “National Research Center “Kurchatov Institute”
- 期: 卷 99, 编号 7 (2025)
- 页面: 1056-1062
- 栏目: STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
- ##submission.dateSubmitted##: 17.10.2025
- ##submission.datePublished##: 15.07.2025
- URL: https://cardiosomatics.orscience.ru/0044-4537/article/view/693647
- DOI: https://doi.org/10.7868/S3034553725070112
- ID: 693647
如何引用文章
详细
Single-phase ceramic samples of new compositions (1-x)(K0.5Na0.5) NbO3 – xSrZrO3 (x = 0–0.15), modified by the addition of 2 wt. % lithium fluoride LiF, were obtained by solid-phase synthesis and their crystal structure, microstructure, dielectric and nonlinear optical properties were studied. The formation of a phase with perovskite structure with pseudocubic unit cell in the modified samples was found. The formation of a finer-grained microstructure with increasing SrZrO3 content has been revealed. Segnetoelectric phase transitions have been confirmed by dielectric spectroscopy. Decrease in the temperature of phase transitions and weakening of nonlinear optical properties as the content of strontium zirconate in the samples increases were found.
作者简介
G. Kaleva
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Email: galina_kaleva@mail.ru
119991, Москва, Россия
E. Politova
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences119991, Москва, Россия
A. Mosunov
Lomonosov Moscow State University119991, Москва, Россия
N. Sadovskaya
Federal State Budgetary Institution “National Research Center “Kurchatov Institute”119333, Москва, Россия
参考
- Valant M. // Progr. Mater. Science. 2012. V. 57. P. 980. https://doi.org/:10.1016/j.pmatsci.2012.02.001
- Bai Y., Han X., Ding K., Qiao L. // Energy Technol. 2017. V. 5. P. 703. https://doi.org/10.1002/ente.201600456
- Ozbolt M., Kitanovski A., Tusek J., Poredos A. // Int. J. Refrig. 2014. V. 40. P. 174. https://doi.org/10.1016/j.ijrefrig.2013.11.007
- Lu S.-G., Zhang Q. // Adv. Mater. 2009. V. 21. P. 1983. https://doi.org/10.1002/adma.200802902
- Axelsson A.-K., Goupil F. Le, Valant M., Alford N.M. // Acta Mater. 2017. V. 124. P. 120. https://doi.org/10.1016/j.actamat.2016.11.001
- Weyland F., Acosta M., Koruza J. et al. // Adv. Funct. Mater. 2016. V. 26. P. 7326. https://doi.org/10.1002/adfm.201602368
- Mischenko A.S., Zhang Q., Scott J.F. et al. // Science. 2006. V. 311. P. 1270. https://doi.org/10.1126/science.1123811
- Suchaneck G., Gerlach G. // Mater. Today: Proceed. 2016. V. 3. P. 622. https://doi.org/10.1016/j.matpr.2016.01.100
- Grünebohm A., Ma Y.B., Marathe M. et al. // Energy Technol. 2018. V. 6. P. 1491. https://doi.org/10.1002/ente.201800166
- Samantaray K.S., Amin R., Rini E. et al. // J. Alloys Compd. 2022. V. 903. Art. № 163837. https://doi.org/10.1016/j.jallcom.2022.163837
- Luo L., Jiang X., Zhang Y., Li K. // J. Eur. Ceram. Soc. 2017. V. 37. P. 2803. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.02.047
- Srikanth K., Vaish R. // J. Eur. Ceram. Soc. 2017. V. 37. P. 3927. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.04.058
- Kimmel A., Gindele O., Duffy D., Cohen R. // Appl. Phys. Lett. 2019. V. 115. Art. № 023902. https://doi.org/10.1063/1.5096592
- Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment // Offic. J. Europ. Union L 37. 2003. V. 46. P. 19–23. http://data.europa.eu/eli/dir/2002/95/oj
- Yang Z., Du H., Jin L. and Poelman D. // J. Mater. Chem. A. 2021. V. 9. P. 18026. https://doi.org/10.1039/d1ta04504k
- Wu J. // J. Appl. Phys. 2020. V. 127 Art. № 190901. https://doi.org/10.1063/5.0006261
- Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0
- Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
- Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x
- Kumar R., Singh S. // J. Alloys Compd. 2017. V. 723. P. 589. https://dx.doi.org/10.1016/j.jallcom.2017.06.252
- Liu Z., Fan H., Lei S. et al. // J. Eur. Ceram. Soc. 2017. V. 37. P. 115. https://dx.doi.org/10.1016/j.jeurceramsoc.2016.07.024
- Kumar R., Singh S. // J. Alloys Compd. 2018. V. 764. P. 289. https://doi.org/10.1016/j.jallcom.2018.06.083
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielect. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
- Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984.
- Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798. https://doi.org/10.1109/JQE.1968.1075108.
补充文件
