Discovery of Ten Anti-HIV Hit Compounds and Preliminary Pharmacological Mechanisms Studies


如何引用文章

全文:

详细

Background:The research and development of HIV drugs is very important, but at the same time it is a long cycle and expensive system project. High-throughput drug screening systems and molecular libraries of potential hit compounds remain the main ways for the discovery of hit compounds with anti-HIV activity.

Objective:The aim of this study was to screen out the hit compounds against HIV-1 in the natural product molecule library and the antiviral molecule library, and elucidate the molecular mechanism of their inhibition of HIV-1, so as to provide a new choice for AIDS drug research.

Methods:In this study, a drug screening system using HIV Rev-dependent indicator cell line (Rev-A3R5-GFP reporter cells) with pseudoviruses (pNL4-3) was used. The natural drug molecule library and antiviral molecule library were screened, and preliminary drug mechanism studies were performed.

Results:Ten promising hit compounds were screened. These ten molecules and their drug inhibitory IC50 were as follows: Cephaeline (0.50 µM), Yadanziolide A (8.82 µM), Bruceine D (2.48 µM), Astragaloside IV (4.30 µM), RX-3117 (1.32 µM), Harringtonine (0.63 µM), Tubercidin (0.41 µM), Theaflavine-3, 3'-digallate (0.41 µM), Ginkgetin (10.76 µM), ZK756326 (5.97 µM). The results of the Time of additions showed that except for Astragaloside IV and Theaflavine-3, 3'-digallate had a weak entry inhibition effect, and it was speculated that all ten compounds had an intracellular inhibition effect. Cephaeline, Harringtonine, Astragaloside IV, Bruceine D, and Tubercidin may have pre-reverse transcriptional inhibition. Yadanziolide A, Theaflavine-3, 3'-digallate, Ginkgetin and RX-3117 may be in the post-reverse transcriptional inhibition. The inhibitory effect of ZK 75632 may be in the reverse transcriptional process.

Conclusion:A drug screening system using Rev-A3R5-GFP reporter cells with pseudoviruses (pNL4-3) is highly efficient. This study provided potential hit compounds for new HIV drug research.

作者简介

Yushan Lian

School of Public Health, Southern Medical University

Email: info@benthamscience.net

Zhimin Huang

School of Public Health, Guangdong Medical University

Email: info@benthamscience.net

Xinyi Liu

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School,, Tsinghua University

Email: info@benthamscience.net

Zhicheng Deng

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University

Email: info@benthamscience.net

Dan Gao

The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School,, Tsinghua University

编辑信件的主要联系方式.
Email: info@benthamscience.net

Xiaohui Wang

Department of Prevention and control of infectious diseases, School of Public Health, Southern Medical University

编辑信件的主要联系方式.
Email: info@benthamscience.net

参考

  1. Deeks SG. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet 2003; 362(9400): 2002-11. doi: 10.1016/S0140-6736(03)15022-2 PMID: 14683662
  2. Blassel L, Zhukova A, Villabona-Arenas CJ, Atkins KE, Hué S, Gascuel O. Drug resistance mutations in HIV: New bioinformatics approaches and challenges. Curr Opin Virol 2021; 51: 56-64. doi: 10.1016/j.coviro.2021.09.009 PMID: 34597873
  3. Gaikwad SY, Phatak P, Mukherjee A. Cutting edge strategies for screening of novel anti-HIV drug candidates against HIV infection: A concise overview of cell based assays. Heliyon 2023; 9(5): e16027. doi: 10.1016/j.heliyon.2023.e16027 PMID: 37215829
  4. Blair WS, Isaacson J, Li X, et al. A novel HIV-1 antiviral high throughput screening approach for the discovery of HIV-1 inhibitors. Antiviral Res 2005; 65(2): 107-16. doi: 10.1016/j.antiviral.2004.11.001 PMID: 15708637
  5. Ellinger B, Pohlmann D, Woens J, et al. A High-throughput HIV-1 drug screening platform, based on lentiviral vectors and compatible with biosafety level-1. Viruses 2020; 12(5): 580. doi: 10.3390/v12050580 PMID: 32466195
  6. Blay V, Tolani B, Ho SP, Arkin MR. High-throughput screening: Today’s biochemical and cell-based approaches. Drug Discov Today 2020; 25(10): 1807-21. doi: 10.1016/j.drudis.2020.07.024 PMID: 32801051
  7. Blanco J, Clotet-Codina I, Bosch B, Armand-Ugón M, Clotet B, Esté JA. Multiparametric assay to screen and dissect the mode of action of anti-human immunodeficiency virus envelope drugs. Antimicrob Agents Chemother 2005; 49(9): 3926-9. doi: 10.1128/AAC.49.9.3926-3929.2005 PMID: 16127073
  8. de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res 2010; 85(1): 75-90. doi: 10.1016/j.antiviral.2009.09.008 PMID: 19781578
  9. Aguilar-Cordova E, Chinen J, Donehower L, Lewis D, Belmont JW. A sensitive reporter cell line for HIV-1 tat activity, HIV-1 inhibitors, and T cell activation effects. AIDS Res Hum Retroviruses 1994; 10(3): 295-301. doi: 10.1089/aid.1994.10.295 PMID: 8018390
  10. Van Loock M, Meersseman G, Van Acker K, et al. A novel high-throughput cellular screening assay for the discovery of HIV-1 integrase inhibitors. J Virol Methods 2012; 179(2): 396-401. doi: 10.1016/j.jviromet.2011.11.029 PMID: 22172974
  11. An WF, Tolliday N. Cell-based assays for high-throughput screening. Mol Biotechnol 2010; 45(2): 180-6. doi: 10.1007/s12033-010-9251-z PMID: 20151227
  12. Jegede O, Khodyakova A, Chernov M, et al. Identification of low-molecular weight inhibitors of HIV-1 reverse transcriptase using a cell-based high-throughput screening system. Antiviral Res 2011; 91(2): 94-8. doi: 10.1016/j.antiviral.2011.05.004 PMID: 21600931
  13. Chiba-Mizutani T, Miura H, Matsuda M, et al. Use of new T-cell-based cell lines expressing two luciferase reporters for accurately evaluating susceptibility to anti-human immunodeficiency virus type 1 drugs. J Clin Microbiol 2007; 45(2): 477-87. doi: 10.1128/JCM.01708-06 PMID: 17182760
  14. Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol 1992; 66(4): 2232-9. doi: 10.1128/jvi.66.4.2232-2239.1992 PMID: 1548759
  15. Spenlehauer C, Gordon CA, Trkola A, Moore JP. A luciferase-reporter gene-expressing T-cell line facilitates neutralization and drug-sensitivity assays that use either R5 or X4 strains of human immunodeficiency virus type 1. Virology 2001; 280(2): 292-300. doi: 10.1006/viro.2000.0780 PMID: 11162843
  16. Westby M, Nakayama G, Butler S, Blair W. Cell-based and biochemical screening approaches for the discovery of novel HIV-1 inhibitors. Antiviral Res 2005; 67(3): 121-40. doi: 10.1016/j.antiviral.2005.06.006 PMID: 16112209
  17. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol 2009; 485: 395-405. doi: 10.1007/978-1-59745-170-3_26 PMID: 19020839
  18. Sarzotti-Kelsoe M, Bailer RT, Turk E, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 2014; 409: 131-46. doi: 10.1016/j.jim.2013.11.022 PMID: 24291345
  19. Wu Y, Beddall MH, Marsh JW. Rev-dependent lentiviral expression vector. Retrovirology 2007; 4(1): 12. doi: 10.1186/1742-4690-4-12 PMID: 17286866
  20. Shuck-Lee D, Chang H, Sloan EA, Hammarskjold ML, Rekosh D. Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85(8): 3940-9. doi: 10.1128/JVI.02683-10 PMID: 21289114
  21. Prado S, Beltrán M, Coiras M, Bedoya LM, Alcamí J, Gallego J. Bioavailable inhibitors of HIV-1 RNA biogenesis identified through a Rev-based screen. Biochem Pharmacol 2016; 107: 14-28. doi: 10.1016/j.bcp.2016.02.007 PMID: 26896646
  22. Plaza A, Bewley CA. Largamides A-H, unusual cyclic peptides from the marine cyanobacterium Oscillatoria sp. J Org Chem 2006; 71(18): 6898-907. doi: 10.1021/jo061044e PMID: 16930043
  23. Plaza A, Bifulco G, Keffer JL, Lloyd JR, Baker HL, Bewley CA. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J Org Chem 2009; 74(2): 504-12. doi: 10.1021/jo802232u PMID: 19072692
  24. Richard K, Williams D, de Silva E, et al. Identification of novel HIV-1 latency-reversing agents from a library of marine natural products. Viruses 2018; 10(7): 348. doi: 10.3390/v10070348 PMID: 29954099
  25. Garcia JM, Gao A, He PL, et al. High-throughput screening using pseudotyped lentiviral particles: A strategy for the identification of HIV-1 inhibitors in a cell-based assay. Antiviral Res 2009; 81(3): 239-47. doi: 10.1016/j.antiviral.2008.12.004 PMID: 19118579
  26. Adelson ME, Pacchia AL, Kaul M, et al. Toward the development of a virus-cell-based assay for the discovery of novel compounds against human immunodeficiency virus type 1. Antimicrob Agents Chemother 2003; 47(2): 501-8. doi: 10.1128/AAC.47.2.501-508.2003 PMID: 12543650
  27. Richman L, Meylan PRA, Munoz M, Pinaud S, Mirkovitch J. An adenovirus-based fluorescent reporter vector to identify and isolate HIV-infected cells. J Virol Methods 2002; 99(1-2): 9-21. doi: 10.1016/S0166-0934(01)00375-5 PMID: 11684299
  28. Gervaix A, West D, Leoni LM, Richman DD, Wong-Staal F, Corbeil J. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci 1997; 94(9): 4653-8. doi: 10.1073/pnas.94.9.4653 PMID: 9114046
  29. Yuntao Wu , Beddall MH, Marsh JW. Rev-dependent indicator T cell line. Curr HIV Res 2007; 5(4): 394-402. doi: 10.2174/157016207781024018 PMID: 17627502
  30. Sarzotti-Kelsoe M, Daniell X, Todd CA, et al. Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J Immunol Methods 2014; 409: 147-60. doi: 10.1016/j.jim.2014.02.013 PMID: 24607608
  31. Yi F, Guo J, Dabbagh D, et al. Discovery of novel small-molecule inhibitors of LIM domain kinase for inhibiting HIV-1. J Virol 2017; 91(13): e02418-16. doi: 10.1128/JVI.02418-16 PMID: 28381571
  32. Abookleesh FL, Al-Anzi BS, Ullah A. Potential antiviral action of alkaloids. Molecules 2022; 27(3): 903. doi: 10.3390/molecules27030903 PMID: 35164173
  33. Chowdhury P, Sahuc ME, Rouillé Y, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One 2018; 13(11): e0198226. doi: 10.1371/journal.pone.0198226 PMID: 30485282
  34. Wang S, Li J, Huang H, et al. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali. Biol Pharm Bull 2009; 32(1): 132-5. doi: 10.1248/bpb.32.132 PMID: 19122295
  35. Zhang Y, Zhu H, Huang C, et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J Cardiovasc Pharmacol 2006; 47(2): 190-5. doi: 10.1097/01.fjc.0000199683.43448.64 PMID: 16495755
  36. Zhao L, Li C, Zhang Y, Wen Q, Ren D. Phytochemical and biological activities of an anticancer plant medicine: Brucea javanica. Anticancer Agents Med Chem 2014; 14(3): 440-58. doi: 10.2174/18715206113136660336 PMID: 24066797
  37. Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major constituents from brucea javanica and their pharmacological actions. Front Pharmacol 2022; 13: 853119. doi: 10.3389/fphar.2022.853119 PMID: 35370639
  38. Lin Z-X, Lin ZX, Leung PS, Chen LH, Zhao M, Liang J. Involvement of the mitochondrial pathway in bruceine D-induced apoptosis in Capan-2 human pancreatic adenocarcinoma cells. Int J Mol Med 2012; 30(1): 93-9. doi: 10.3892/ijmm.2012.980 PMID: 22552257
  39. Haskell CA, Horuk R, Liang M, et al. Identification and characterization of a potent, selective nonpeptide agonist of the CC chemokine receptor CCR8. Mol Pharmacol 2006; 69(1): 309-16. doi: 10.1124/mol.105.014779 PMID: 16221874
  40. Peters GJ, Smid K, Vecchi L, et al. Metabolism, mechanism of action and sensitivity profile of fluorocyclopentenylcytosine (RX-3117; TV-1360). Invest New Drugs 2013; 31(6): 1444-57. doi: 10.1007/s10637-013-0025-x PMID: 24048768
  41. Choi WJ, Chung HJ, Chandra G, et al. Fluorocyclopentenyl-cytosine with broad spectrum and potent antitumor activity. J Med Chem 2012; 55(9): 4521-5. doi: 10.1021/jm3004009 PMID: 22524616
  42. Yosifov DY, Idler I, Bhattacharya N, et al. Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia 2020; 34(1): 115-27. doi: 10.1038/s41375-019-0513-x PMID: 31300746
  43. De Clercq E, Bergstrom DE, John AH, Montgomery A. Broad-spectrum antiviral activity of adenosine analogues. Antiviral Res 1984; 4(3): 119-33. doi: 10.1016/0166-3542(84)90012-3 PMID: 6476818
  44. Miki K, Nagai T, Suzuki K, et al. Anti-influenza virus activity of biflavonoids. Bioorg Med Chem Lett 2007; 17(3): 772-5. doi: 10.1016/j.bmcl.2006.10.075 PMID: 17110111
  45. Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3(2): 119-28. doi: 10.1016/j.coviro.2013.03.014 PMID: 23602470
  46. Skoog MT, Hargrave KD, Miglietta JJ, Kopp EB, Merluzzi VJ. Inhibition of HIV‐1 reverse transcriptase and virus replication by a non‐nucleoside dipyridodiazepinone BI‐RG‐587 (nevirapine). Med Res Rev 1992; 12(1): 27-40. doi: 10.1002/med.2610120103 PMID: 1371177
  47. Arion D, Fletcher RS, Borkow G, et al. Differences in the inhibition of human immunodeficiency virus type 1 reverse transcriptase DNA polymerase activity by analogs of nevirapine and 2′,5′-bis-O-(tert-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1", 2"-oxathiole-2",2"-dioxide (TSAO). Mol Pharmacol 1996; 50(5): 1057-64. PMID: 8913335
  48. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019; 394(10204): 1145-58. doi: 10.1016/S0140-6736(19)30427-1 PMID: 31248666
  49. Kyu HH, Abate D, Abate KH, et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1859-922. doi: 10.1016/S0140-6736(18)32335-3 PMID: 30415748

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bentham Science Publishers, 2024