Оценка компонентного состава и толщины измененного слоя карбидов вольфрама и тантала при стационарном распылении ионами гелия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Предложен метод расчета компонентного состава и толщины измененного в результате длительного (стехиометрического) распыления слоя двухкомпонентных мишеней при облучении легкими ионами. Метод основан на ранее апробированной модели распыления неоднородных двухкомпонентных материалов легкими ионами. В случае стационарного распыления карбидов вольфрама и тантала ионами гелия приведены результаты расчетов компонентного состава и толщины измененного слоя в сравнении с экспериментальными данными.

Полный текст

Доступ закрыт

Об авторах

В. В. Манухин

Национальный исследовательский университет “МЭИ”

Автор, ответственный за переписку.
Email: manukhinvv@mpei.ru
Россия, Москва, 111250

Список литературы

  1. Wiederish H. // Surface Modification and Alloying. N.Y: Springer, 1983. P. 261.
  2. Betz G., Wehner G.K. // Sputtering by Particle Bombardment II. / Ed. Behrisch R. Berlin–Heidelberg: Springer–Verlag, 1983. P. 11.
  3. Andersen H.H. // Ion Implantation and Beam Processing / Ed. Williams J.S., Poate J.M. Sydney: Academic, 1984. P. 128.
  4. Sigmund P., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1993. V. 82. P. 242.
  5. Seah M.P., Nunney T.S. // J. Phys. D. 2010. V. 43. № 25. P. 253001. https://doi.org/10.1088/0022-3727/43/25/253001
  6. Lian S., Yang H., Terblans J.J., Swart H.C., Wang J., Xu C. // Thin Solid Films. 2021. V. 721. P. 138545. https://doi.org/10.1016/j.tsf.2021.138545
  7. Sukenobu S., Gomay Y. // J. Nucl. Sci. Technol. 1984. V. 21. № 5. P. 366. https://doi.org/10.1080/18811248.1984.9731057
  8. Kelly R., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1986. V. 13. P. 283.
  9. Manukhin V.V. // J. Phys.: Conf. Ser. 2020. V. 1683. P. 032002. https://doi.org/10.1088/1742-6596/1683/3/032002
  10. Manukhin V.V. // J. Phys.: Conf. Ser. 2022. V. 2388. P. 012009. https://doi.org/10.1088/1742-6596/2388/1/012009
  11. Sigmund P., Oliva A., Falcone G. // Nucl. Instrum. Methods. 1982. V. 194. P. 541.
  12. Sigmund P., Oliva A. // Nucl. Instrum. Methods Phys. Res. B. 1993. V. 82. P. 242.
  13. Galkute L., Pranevičius L., Zubauskas G. // Nucl. Instrum. Methods Phys. Res. B. 1987. V. 21. P. 46.
  14. Манухин В.В. // Журнал технической физики. 2023. Т. 93. Вып. 6. С. 13. https://dio.org./10.21883/JTF.2023.06.55610.52-23
  15. Patterson W.L., Shirn G.A. // J. Vacuum Sci. Technol. 1967. V. 4. P. 343.
  16. Falcone G., Sigmund P. // Appl. Phys. 1981. V. 25. P. 307.
  17. Vicanek M., Jimenez-Rodriguez J.J., Sigmund P. // Nucl. Instrum. Methods Phys. Res. B. 1989. V. 36. P. 124.
  18. Eckstein W. Computer Simulation of Ion–Solid Interaction. Berlin–Heidelberg: Springer–Verlag, 1991. 296 p.
  19. Biersack J.P. // Fusion Technol. 1984. V. 6. P. 475.
  20. Chou P.S., Ghoniem N.M. // J. Nucl. Mater. 1986. V. 141–143. P. 216.
  21. Roth J., Bohdansky J., Martinelli A.P. // Radiat. Effects. 1980. V. 48. P. 213.
  22. Varga P., Taglauer E. // J. Nucl. Mater. 1982. V. 111–112. P. 726.
  23. Taglauer E., Heiland W. // Proc. Symp. on Sputtering. Wien, 1980. P. 423.
  24. Eckstein W., Biersack J.P. // Appl. Phys. A. 1985. V. 37. P. 95.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Полные коэффициенты распыления WC в зависимости от энергии ионов гелия (нормальное падение), расчет: сплошная линия — стехиометрическое распыление измененного слоя; штриховая линия — без образования измененного слоя; символы — эксперимент [21].

Скачать (10KB)
3. Рис. 2. Полные коэффициенты распыления TaC в зависимости от энергии ионов гелия (нормальное падение), расчет: сплошная линия — стехиометрическое распыление измененного слоя; штриховая линия — без образования измененного слоя; символы — эксперимент [21].

Скачать (10KB)
4. Рис. 3. Расчет толщины измененного слоя при стехиометрическом распылении WC ионами гелия в зависимости от энергии ионов (нормальное падение).

5. Рис. 4. Зависимость толщины измененного слоя от энергии ионов гелия (нормальное падение) при стехиометрическом распылении TaC: сплошная линия — расчет; символы — эксперимент [22].

Скачать (10KB)
6. Рис. 5. Результаты расчетов относительной концентрации вольфрама в измененном слое при стехиометрическом распылении WC ионами He в зависимости от энергии ионов (падение под углом 30°): сплошная линия — расчет;  — данные компьютерного моделирования [24]; ● — эксперимент [23].

Скачать (11KB)
7. Рис. 6. Результаты расчетов относительной концентрации тантала в измененном слое при стационарном распылении TaC ионами He в зависимости от энергии ионов (нормальное падение): сплошная линия — расчет; символы — эксперимент [22].


© Российская академия наук, 2024