Alloparental Care and Postnatal Development of Heterozygous TPH2 Transgenic Mice


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The issue of the relationship between the transmission of a negative effect from a depressed mother to her offspring is one of the priorities in modern psychiatry. Mice with the knocked-out tryptophan hydroxylase-2 (TPH2) gene have a depressive-compulsive phenotype, which makes these animals a highly appropriate bio-model for studying the role of serotonin in the body. In the offspring of such animals the following reproductive parameters were studied: pups maturation (physiological development) and sensory and motor reflexes. It was found that in the heterozygous mice, maternal care was reduced by the TPH2 gene knockout and canibalism directed at offspring was increased. Deviations and violations in the return of pups to the nest were revealed in maternal behavior. Some deficiency in the development of heterozygous offspring was observed after 10 days. The homozygous (KO) pups had a lower body mass than the heterozygous (Het) and wild-type (Wt) pups. The rate of detachment of the auricle, eruption of the upper incisors, opening of the eyes, and lowering of the testes in the KO pups were observed at the same time as in the Wt and Het pups.

作者简介

A. Kibitkina

Gorbatov Federal Research Center for Food Systems

Email: nchjournal@gmail.com
Russia, Moscow

E. Vasilevskaya

Gorbatov Federal Research Center for Food Systems

Email: nchjournal@gmail.com
Russia, Moscow

G. Tolmacheva

Gorbatov Federal Research Center for Food Systems

Email: nchjournal@gmail.com
Russia, Moscow

A. Zubalii

Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia

Email: nchjournal@gmail.com
Russia, Krasnogorsk

参考

  1. Corchs F., Nutt D.J., Corchs F., Hince D.A., Bernik M. et al. // J. Psychopharmacol. 2015. V. 29. P. 61–69.
  2. Pawluski J.L., Li M., Lonstein J.S. // Front. Neuroendocrinol. 2019. V. 53. № 100742. https://doi.org/10.1016/j.yfrne.2019.03.001
  3. Gabriele S., Sacco R., Persico A.M. // Eur. Neuropsychopharmacol. 2014. V. 24. P. 919–929.
  4. Cordner Z.A., Marshall-Thomas I., Boersma G.J., Lee R.S., Potash J.B. et al. // Neurobiol. Stress. 2021. V. 15. №100392.
  5. Migliarini S., Pacini G., Pelosi B., Lunardi G., Pasqualetti M. // Mol. Psychiatry. 2013. V. 18. P. 1106–1118.
  6. Auth C.S., Weidner M.T., Strekalova T., Schmitt-Böhrer A.G., Popp S. et al. // Eur. Neuropsychopharmacol. 2018. V. 12. P. 19–30. https://doi.org/10.1016/j.euroneuro.2018.07.103
  7. Pratelli M., Pasqualetti M. // Biochem. J. 2019. V. 161. P. 3–14.
  8. Angoa-Perez M., Kane M.J., Briggs D.I., Herrera-Mundo N., Sykes C.E. et al. // ACS Chem. Neurosci. 2014. V. 5. № 10. P. 908–919.
  9. Mosienko V., Bert B., Beis D., Matthes S., Fink H. et al. // Transl. Psychiatry. 2012. V. 2. № 122. https://doi.org/10.1038/tp.2012.44
  10. Strekalova T., Svirin E., Waider J., Gorlova A., Cespuglio R. et al. // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2021. V.108. № 110155.
  11. Orso R., Creutzberg K.C., Wearick-Silva L.E., Wendt V.T. et al. // Front. Behav. Neurosci. 2019. V. 13 № 197. https://doi.org/10.3389/fnbeh.2019.00197
  12. Alenina N., Kikic D., Todiras M. et al. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. № 25. P. 10332–10337.
  13. Heyne G., Plisch E.H., Melberg C.G., Sandgren E.P., Peter J.A. et al. // J. Am. Assoc. Lab. Anim. 2015. V. 54. № 4. P. 368–371.
  14. Mironov A.N. // Guidelines for preclinical studies of drugs. M.: Grif and K. M.: Grif and K. 2013. 944 c.
  15. Windsor Z. // Heliyon. 2019. V. 5. № 7. P. 14–28.
  16. Stepanichev M.Y., Nedogreeva O.A, Klimanova M.A. et al. // Neurosci. Behav. Physi. 2022. V. 71. № 3. P. 370–386.
  17. Umemura S., Imai S., Mimura A., Fujiwara M., Ebihara S. // PLoS One. 2015. V. 10. № 8. P. e0136016.
  18. Martin-Sanchez A., Valera-Marin G., Hernandez-Martinez A., Lanuza E., et al. // Front. Neurosci. 2015. V. 9. P. 197–223.
  19. Heyser C.J. // Curr. Protoc. Neurosci. 2004. V. 25. № 8. P. 18.
  20. Pinto L.H., Enroth-Cugell C. // Mamm. Genome. 2000, V. 11. № 7. P. 531–536.
  21. Feather-Schussler D.N., Ferguson T.S. // J. Vis. Exp. 2016. V. 117. P. 1–9.
  22. Yun H., Park E.S., Choi S., Shin B., Yu J. et al. // PLoS Gen. 2019. V. 15 № 6. P. e1008214.
  23. Muzerelle A., Soiza-Reilly M., Hainer C., Ruet P.L. et al. // Sci. Rep. 2021. V. 11. № 1. P. 6004.
  24. Brajon S., Morello G.M., Capas-Peneda S., Hultgren J. et al. // Animals 2021. V. 11. № 8. P. 2327.
  25. Weber E.M., Algers B., Hultgren J., Olsson I.A. // Acta Vet. Scand. 2013. V. 55. № 1. P. 83.
  26. Pelosi B., Migliarini M., Pacini S., Pasqualetti M. // PLoS One. 2015. V. 10. № 8. P. e0136422.
  27. Wolkowitz O.M., Reus V.I., Mellon S.H. // Dialogues in Clinical Neuroscience. 2011. V. 13. № 1. P. 25–39.
  28. Horvath G., Reglodi D., Farkas J., Vadasz G. et al. // Adv. Neurobiol. 2015. V. 10. P. 149–167.
  29. Mosienko V., Alenina N. // Behav. Brain Res. 2018. V. 277. P. 405–420.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (36KB)
4.

下载 (41KB)
5.

下载 (30KB)
6.

下载 (124KB)

版权所有 © А.А. Кибиткина, Е.Р. Василевская, Г.С. Толмачева, А.М. Зубалий, 2023