Features оf Changes in the Level of Neurotransmitters and Markers of Neurodegeneration in the Brain of Rats with Experimental Parkinson’s Disease Against the Background of Course Therapy with Steroid Glycoalkaloids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Parkinson’s disease is a chronic neurodegenerative disease, one of the pathobiochemical manifestations of which is an imbalance of neurotransmitters in the brain. The aim of this work is to study the effect of glycoalkaloids on changes in the level of neurotransmitters and markers of brain neurodegeneration in rats with experimental Parkinson’s disease. Parkinson’s disease was modeled in animals by intracerebral administration of rotenone. The studied glycoalkaloids were administered orally at a dose of 0.06 mg / kg, a course of 28 days after pathology modeling. The study found that the use of the analyzed glycoalkaloids did not affect the concentration of dopamine and serotonin, and also significantly (p < 0.05) reduced the level of ACh by 35.9% and increased the level of GABA by 55.1%, reduced the concentration of S100β protein by 68.6% and increased the level of BDNF by 52.4%.

Full Text

Restricted Access

About the authors

V. A. Voronov

Pyatigorsk Medical and Pharmaceutical Institute — branch of the Volgograd State Medical University of the Ministry of Health of Russia

Author for correspondence.
Email: a54545a@mail.ru
Russian Federation, Pyatigorsk

D. I. Pozdnyakov

Pyatigorsk Medical and Pharmaceutical Institute — branch of the Volgograd State Medical University of the Ministry of Health of Russia; “Pyatigorsk State Research Institute of Balneology” branch of the Federal State Budgetary Institution “Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency”

Email: a54545a@mail.ru
Russian Federation, Pyatigorsk; Pyatigorsk

References

  1. Church F.C. // Biomolecules. 2021. V. 11. № 4. P. 612. https://doi.org/10.3390/biom11040612
  2. Nawaz H., Sargent L., Quilon H., Cloud L.J., Testa C.M., Snider J.D., Lageman S.K., Baron M.S., Berman B.D., Zimmerman K., Price E.T., Mukhopadhyay N.D., Barrett M.J. // Parkinsons Dis. 2022. V. 12. № 2. P. 599—606. https://doi.org/10.3233/JPD-212769.
  3. Ершова М.В., Иванова Е.О., Иллариошкин С.Н. // 2018. № 1. С. 3—9.
  4. Seppi K., Ray Chaudhuri K., Coelho M., Fox S.H., Katzenschlager R., Perez Lloret S., Weintraub D., Sampaio C. & the collaborators of the Parkinson’s Disease Update on Non-Motor Symptoms Study Group on behalf of the Movement Disorders Society Evidence-Based Medicine Committee // Mov Disord. 2019. V. 34. № 2. P. 180—198. https://doi.org/10.1002/mds.27602
  5. Elsworth J.D. // Neural Transm. 2020. V. 127. № 5. P. 785—791. https://doi.org/10.1007/s00702-020-02167-1
  6. Воронов В.А., Поздняков Д.И., Золотых Д.С., Дайронас Ж.В., Черников М.В. // ВНМТ. 2023. Т. 30. № 1. С. 75—79.
  7. Mihaylova A., Doncheva N., Zlatanova H., Delev D., Ivanovska M., Koeva Y., Murdjeva M., Kostadinov I. // Basic Med Sci. 2021. V. 24. № 5. P. 577—585. https://doi.org/10.22038/ijbms.2021.50439.11488
  8. Катунина Е.А., Титова Н.В., Бездольный Ю.Н., Шиккеримов Р.К., Гасанов М.Г., Бурд С.Г., Лебедева А.В., Бойко А.Н. // Журнал неврологии и психиатрии им. С.С. Корсакова. 2015. Т. 115. № 5. С. 34—40.
  9. Innos J., Hickey M.A. // Chem Res Toxicol. 2021. V. 34. № 5. P. 1223—1239. https://doi.org/10.1021/acs.chemrestox.0c00522
  10. Бухтиярова И.П., Калиушко В.Р. // Научно-практические аспекты развития АПК: Материалы национальной научной конференции. 2021. Часть 1. С. 135—138.
  11. Кузьмин О.Б., Жежа В.В., Бучнева Н.В., Ландарь Л.Н. // Артериальная гипертензия. 2022. Т. 28. № 5. С. 600—608.
  12. Singh R., Parmar M. // StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023.
  13. Dagaev S.G., Kosmachev A.B., Soloveva N.E., Filko O.A., Sanotskii V.I., Dolgo-Saburov V.B. // Bull Exp Biol Med. 2004. V. 137. № 2. P. 164-6. https://doi.org/10.1023/b:bebm.0000028130.09656.ac
  14. Błaszczyk J.W. // Front Neurosci. 2016. № 10. P. 269. https://doi.org/10.3389/fnins.2016.00269.
  15. Connolly B.S., Lang A.E. // JAMA. 2014. V. 311. № 16. P. 1670-83. https://doi.org/10.1001/jama.2014.3654.
  16. Michetti F., D’Ambrosi N., Toesca A., Puglisi M.A., Serrano A., Marchese E., Corvino V., Geloso M.C. // Neurochem. 2019. V. 148. № 2. P. 168—187. https://doi.org/10.1111/jnc.14574
  17. Palasz E., Wysocka A., Gasiorowska A., Chalimoniuk M., Niewiadomski W., Niewiadomska G. // Mol Sci. 2020. V. 21. № 3. P. 1170. https://doi.org/10.3390/ijms21031170
  18. Dong A.Q., Yang Y.P., Jiang S.M., Yao X.Y., Qi D., Mao C.J., Cheng X.Y., Wang F., Hu L.F., Liu C.F. // Acta Pharmacol Sin. 2023. V. 44. № 1. P. 32—43. https://doi.org/10.1038/s41401-022-00951-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of pramipexole and glycoalkaloids on changes in the concentration of neurotransmitters in brain tissues in rats with Parkinson's disease. - reliably relative to LO; ■ — reliably relative to NC.

Download (93KB)
3. Fig. 2. The effect of pramipexole and a mixture of solanine and chaconin on changes in the concentration of S100ß protein and BDNF substance in brain tissues in rats with Parkinson's disease. - reliably relative to LO; ■ — reliably relative to NC.

Download (72KB)

Copyright (c) 2024 Russian Academy of Sciences