Possible Mechanism for Perception of Auditory-Verbal Hallucinations in Schizophrenia and Approaches to Their Weakening

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We put forward a hypothesis that the processing and perception of auditory-verbal hallucinations in schizophrenia — internally generated speech, occurs in the same neural circuits as speech from external sources. These topographically organized cortico—basal ganglia—thalamocortical neural circuits include auditory, language, and frontal neocortical areas. It follows from our proposed mechanism for sound processing, that the increased action on dopamine D2 receptors on striatal neurons, which is considered the cause of hallucinations, should lead to a determined reorganization of activity in these neural circuits. As a result of this reorganization, the inhibition of neurons in the thalamic nuclei, including the internal geniculate body, should decrease synergistically through the direct and indirect pathways in the basal ganglia, and the excitation of connected with them cortical neurons, in the activity of which speech is represented, should increase. From this mechanism it follows that in order to weaken the perception of auditory-verbal hallucinations, it is necessary to increase the inhibition of thalamic neurons. Taking into account the known data on the distribution of receptors of different types on neurons in the striatum, thalamus and neocortex, as well as the previously formulated unified modification rules for the effectiveness of synaptic transmission in different structures, we proposed that agonists of adenosine A1 and muscarinic M4 receptors located on striatonigral spiny cells, giving rise to a direct disinhibitory pathway through the basal ganglia as well as antagonists of delta-opioid and cannabinoid CB1 receptors, located on striatopallidal spiny cells, giving rise to an indirect inhibitory pathway through the basal ganglia may be useful to weaken the perception of hallucinations. In addition, activation of A1 receptors can directly weaken the activity of neurons in the thalamus and neocortex due to the induction of long-term depression in the efficiency of their excitation. Inactivation of cannabinoid CB1 receptors on the projection GABAergic cells of the reticular thalamic nucleus may enhance their inhibitory effect on neurons of different thalamic nuclei. Since the proposed substances only indirectly affect the dopaminergic system, their use should not cause such pronounced side effects as D2 receptor antagonists, antipsychotics that are widely used to suppress auditory-verbal hallucinations.

Full Text

Restricted Access

About the authors

I. G. Silkis

Institute of Higher Nervous Activity and Neurophysiology RAS

Author for correspondence.
Email: isa-silkis@mail.ru
Russian Federation, Moscow

References

  1. Faden J., Citrome L. // Med. Clin. North Am. 2023. V. 107. № 1. P. 61—72.
  2. Hugdahl K., Sommer I.E. // Schizophr. Bull. 2018. V. 44. № 2. Р. 234—241.
  3. Gottesmann C. // Psychiatry Clin. Neurosci. 2002. V. 56. № 4. P. 345—354.
  4. Middleton F.A., Strick P.L. // Proc. Natl. Acad. Sci. USA. 1996. V. 93. № 16. P. 8683—8687.
  5. Behrendt R.P. // Conscious Cogn. 2003. V. 12. № 3. P. 413—451.
  6. Силькис И.Г. // Успехи физиол. наук. 2015. Т. 46. № 3. С. 60—75.
  7. Силькис И.Г. // Успехи физиол. наук. 2015. Т. 46. № 3. С. 76—92.
  8. Thomas F., Moulier V., Valéro-Cabré A., Januel D. // Rev. Neurol. (Paris). 2016. V. 172. № 11. P. 653—679.
  9. Huang J., Zhuo C., Xu Y., Lin X. // Neuroscience. 2019. V. 410. P. 59—67.
  10. Okuneye V.T., Meda S., Pearlson G.D., Clementz B.A., Keshavan M.S., Tamminga C.A., Ivleva E., Sweeney J.A., Gershon E.S., Keedy S.K. // Neuroimage Clin. 2020. V. 27. P. 102358.
  11. Lavigne K.M., Woodward T.S. // Hum. Brain Mapp. 2018. V. 39. № 4. P. 1582—1595.
  12. Fuentes-Claramonte P., Soler-Vidal J., Salgado-Pineda P., Ramiro N., Garcia-Leon M.A., Cano R., Arévalo A., Munuera J., Portillo F., Panicali F., Sarró S., Pomarol-Clotet E., McKenna P., Hinzen W. // Neuroimage Clin. 2022. V. 34. P. 103007.
  13. Chhabra H., Selvaraj S., Sreeraj V.S., Damodharan D., Shivakumar V., Kumar V. // Asian J. Psychiatr. 2022. V. 73. P. 103127.
  14. Thoma R.J., Meier A., Houck J., Clark V.P., Lewine J.D., Turner J., Calhoun V., Stephen J. // Schizophr. Res. 2017. V. 188. P. 125—131.
  15. Jones S.R. // Schizophr. Bull. 2010. V. 36. № 3. P. 566—575.
  16. Schnakenberg Martin A.M., Bartolomeo L., Howell J., Hetrick W.P., Bolbecker A.R., Breier A., Kidd G., O’Donnell B.F. // Eur. Arch. Psychiatry Clin. Neurosci. 2018. V. 268. № 7. P. 653—661.
  17. Kompus K., Falkenberg L.E., Bless J.J., Johnsen E., Kroken R.A., Kråkvik B., Larøi F., Løberg E-M., Vedul-Kjelsås E., Westerhausen R., Hugdahl K. // Front. Hum. Neurosci. 2013. V. 7. P. 144.
  18. Ikuta T., DeRosse P., Argyelan M., Karlsgodt K.H., Kingsley P.B., Szeszko P.R., Malhotra A.K. // Behav. Brain Res. 2015. V. 295. P. 78—81.
  19. Li B., Cui L.B., Xi Y.B., Friston K.J., Guo F., Wang H.N., Zhang L.C., Bai Y.H., Tan Q.R., Yin H., Lu H. // Neurosci. Bull. 2017. V. 33. № 3. P. 281—291.
  20. Perez-Rando M., Elvira U.K.A., García-Martí G., Gadea M., Aguilar E.J., Escarti M.J., Ahulló-Fuster M.A., Grasa E., Corripio I., Sanjuan J., Nacher J. // Neuroimage Clin. 2022. V. 35. P. 103070.
  21. van Lutterveld R., Diederen K.M., Koops S., Begemann M.J., Sommer I.E. // Schizophr. Res. 2013. V. 145. № 1—3. P. 27—32.
  22. Avram M., Brandl F., Knolle F., Cabello J., Leucht C., Scherr M., Mustafa M., Koutsouleris N., Leucht S., Ziegler S., Sorg C. // Brain. 2020. V. 143. № 11. P. 3495—3505.
  23. Mancini V., Zöller D., Schneider M., Schaer M., Eliez S. // Biol. Psychiatry Cogn. Neurosci. Neuroimaging. 2020. V. 5. № 9. P. 875—890.
  24. Marschall T.M., Ćurčić-Blake B., Brederoo S.G., Renken R.J., Linszen M.M.J., Koops S., Sommer I.E.C. // Cortex. 2021. V. 136. P. 1—13.
  25. Horga G., Abi-Dargham A. // Nat. Rev. Neurosci. 2019. V. 20. № 12. P. 763—778.
  26. Musiek F.E., Morris S., Ichiba K., Clark L., Davidson A.J. // J. Am. Acad. Audiol. 2021. V. 32. № 3. P. 195—210.
  27. Mou X., Bai F., Xie C., Shi J., Yao Z., Hao G., Chen N., Zhang Z. // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013. V. 44. P. 265—270.
  28. Barber L., Reniers R., Upthegrove R. // Transl. Psychiatry. 2021. V. 11. № 1. P. 582.
  29. Marino M., Spironelli C., Mantini D., Craven A.R., Ersland L., Angrilli A., Hugdahl K. // J. Psychiatr. Res. 2022. V. 55. P. 24—32.
  30. Castner S.A., Goldman-Rakic P.S. // Biol. Psychiatry. 2003. V. 54. № 2. P. 105—110.
  31. Fuentes-Claramonte P., Soler-Vidal J., Salgado-Pineda P., García-León M.Á., Ramiro N., Santo-Angles A., Llanos Torres M., Tristany J., Guerrero-Pedraza A., Munuera J., Sarró S., Salvador R., Hinzen W., McKenna P.J., Pomarol-Clotet E. // Sci. Rep. 2021. V. 11. № 1. P. 18890.
  32. Ferrarelli F., Tononi G. // Schizophr. Bull. 2011. V. 37. № 2. P. 306—315.
  33. Behrendt R.P., Young C. // Behav. Brain Sci. 2004. V. 27. № 6. P. 771—787.
  34. Pratt J.A., Morris B.J. // J. Psychopharmacol. 2015. V. 29. № 2. P. 127—137.
  35. Snyder G.L., Vanover K.E. // Adv. Neurobiol. 2017. V. 17. P. 385—409.
  36. Kessler R.M., Woodward N.D., Riccardi P., Li R., Ansari M.S., Anderson S., Dawant B., Zald D., Meltzer H.Y. // Biol. Psychiatry. 2009. V. 65. № 12. P. 1024—1031.
  37. Abi-Dargham A. // In. J. Neuropsychopharmacol. 2004. V. 7. Suppl 1. P. S1—S5.
  38. Schmack K., Bosc M., Ott T., Sturgill J.F., Kepecs A. // Science. 2021. V. 372. № 6537. eabf4740.
  39. Takahashi H., Higuchi M., Suhara T. // Biol. Psychiatry. 2006. V. 59. № 10. P. 919—928.
  40. Силькис И.Г. // Успехи физиол. наук. 2002. Т. 33. № 1. С. 40—56.
  41. Силькис И.Г. // Журн. высш. нерв. деят. 2002. Т. 52. № 4. С. 392—405.
  42. Bleickardt C.J., Lashomb A.L., Merkel C.E., Hodgson R.A. // Parkinsons Dis. 2012. V. 2012. P. 591094.
  43. Cleghorn J.M., Franco S., Szechtman B., Kaplan R.D., Szechtman H., Brown G.M., Nahmias C., Garnett E.S. // Am. J. Psychiatry. 1992. V. 149. № 8. P. 1062—1069.
  44. Horga G., Parellada E., Lomeña F., Fernández-Egea E., Mané A., Font M., Falcón C., Konova A.B., Pavia J., Ros D., Bernardo M. // J. Psychiatry Neurosci. 2011. V. 36. № 5. P. 312—321.
  45. Zhuo C., Zhu J., Qin W., Qu H., Ma X., Yu C. // Br. J. Psychiatry. 2017. V. 210. № 3. P. 209—215.
  46. Salisbury D.F., Wang Y., Yeh F.C., Coffman B.A. // Schizophr. Bull. 2021. V. 47. № 1. P. 149—159.
  47. Cui L.B., Liu L., Guo F., Chen Y.C., Chen G., Xi M., Qin W., Sun J-B., Li C., Xi Y-B., Wang H-N., Yin H. // Radiology. 2017. V. 283. № 3. P. 810—819.
  48. Cui L.B., Liu K., Li C., Wang L.X., Guo F., Tian P., Wu Y.J., Guo L., Liu W.M., Xi Y.B., Wang H.N., Yin H. // Schizophr. Res. 2016. V. 173. № 1-2. P. 13—22.
  49. Chen C., Wang G.H., Wu S.H., Zou J.L., Zhou Y., Wang H.L. // Curr. Med. Sci. 2020. V. 40. № 5. P. 979—984.
  50. Ćurčić-Blake B., Ford J.M., Hubl D., Orlov N.D., Sommer I.E., Waters F., Allen P., Jardri R., Woodruff P.W., David O., Mulert C., Woodward T.S., Aleman A. // Prog. Neurobiol. 2017. V. 148. P. 1—20.
  51. Avram M., Brandl F., Bäuml J., Sorg C. // Neuropsychopharmacology. 2018. V. 43. № 11. P. 2239—2248.
  52. Phillips D.P., Irvine D.R. // J. Neurophysiol. 1979. V. 42. Pt 1. P. 123—136.
  53. Joel D., Weiner I. // Neuroscience. 2000. V. 96. № 2. P. 451—474.
  54. Yeterian E.H., Pandya D.N. // J. Comp. Neurol. 1998. V. 399. P. 384—402.
  55. Reale R.A., Imig T.J. // Neuroscience. 1983. V. 8. № 1. P. 67—86.
  56. Kaas J.H., Hackett T.A. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. P. 11793—11799.
  57. Hackett T.A., Stepniewska I., Kaas J.H. // J. Comp. Neurol. 1998. V. 400. P. 271—286.
  58. Shammah-Lagnado S.J., Alheid G.F., Heimer L. // J. Comp. Neurol. 1996. V. 376. P. 489—507.
  59. Aleman A., Bocker K.B., Hijman R., de Haan E.H., Kahn R.S. // Schizophr. Res. 2003. V. 64. № 2-3. P. 175—185.
  60. Zmigrod L., Garrison J.R., Carr J., Simons J.S. // Neurosci. Biobehav. Rev. 2016. V. 69. P. 113—123.
  61. Силькис И.Г. // Журн. высш. нерв. деят. 2001. Т. 51. № 3. С. 293—302.
  62. Silkis I. // Biosystems. 2001. V. 59. № 1. P. 7—14.
  63. Silkis I.G. // Нейрохимия. 2007. Т. 24. № 4. С. 297—303.
  64. Силькис И.Г. // Нейрохимия. 2014. Т. 31. № 4. С. 287—299.
  65. Hoffman R.E., Fernandez T., Pittman B., Hampson M. // Biol. Psychiatry. 2011. V. 69. № 5. P. 407—414.
  66. Hoffman R.E., Hampson M. // Front. Hum. Neurosci. 2012. V. 6. P. 6.
  67. Fink-Jensen A. // Dan. Med. Bull. 2000. V. 47. № 3. P. 151—167.
  68. Eisinger R.S., Urdaneta M.E., Foote K.D., Okun M.S., Gunduz A. // Front. Neurosci. 2018. V. 12. P. 385.
  69. Gurney K., Prescott T.J., Redgrave P. // Biol. Cybern. 2001. V. 84. P. 401—410.
  70. Силькис И.Г. // Нейрохимия. 2013. T. 30. № 4. C. 305—313.
  71. Tecuapetla F., Jin X., Lima S.Q., Costa R.M. // Cell. 2016. V. 166. № 3. P. 703—715.
  72. Guo Y., Schmitz T.W., Mur M., Ferreira C.S., Anderson M.C. // Neuropsychologia. 2018. V. 108. P. 117—134.
  73. Tatz J.R., Soh C., Wessel J.R. // J. Neurosci. 2021. V. 41. № 42. P. 8826—8838.
  74. Chen L., Wang X., Ge S., Xiong Q. // Nat. Commun. 2019. V. 10. № 1. P. 418.
  75. Силькис И.Г. // Рос. физиол. журн. им. И.М. Сеченова. 2002. Т. 88. № 2. C. 144—157.
  76. Силькис И.Г. // Успехи физиол. наук. 2003. Т. 34. № 4. С. 54—74.
  77. Силькис И.Г. // Журн. высш. нерв. деят. 2004. Т. 54. № 6. С. 734—749.
  78. Sommer I.E., Slotema C.W., Daskalakis Z.J., Derks E.M., Blom J.D., van der Gaag M. // Schizophr. Bull. 2012. V. 38. № 4. P. 704—714.
  79. Citrome L., Meyer J.M. // J. Clin. Psychiatry. 2023. V. 84. № 4. sunscz3001sho.
  80. Hackett T.A. // Anat. Rec. (Hoboken). 2018. V. 301. № 11. P. 1882—1905.
  81. Goodman R.R., Synder S.H. // J. Neurosci. 1982. V. 2. № 9. P. 1230—1241.
  82. Chun S., Bayazitov I.T., Blundon J.A., Zakharenko S.S. // J. Neurosci. 2013. V. 33. № 17. P. 7345—7357.
  83. Mirza N.R., Peters D., Sparks R.G. // CNS Drug. Rev. 2003. V. 9. № 2. P. 159—186.
  84. Shekhar A., Potter W.Z., Lightfoot J., Lienemann J., Dubé S., Mallinckrodt C., Bymaster F.P., McKinzie D.L., Felder C.C. // Am. J. Psychiatry. 2008. V. 165. № 8. P. 1033—1039.
  85. Barak S., Weiner I. // Int. J. Neuropsychopharmacol. 2011. V. 14. № 9. P. 1233—1246.
  86. Yohn S.E., Weiden P.J., Felder C.C., Stahl S.M. // Trends Pharmacol, Sci. 2022. V. 43. № 12. P. 1098—1112.
  87. Brannan S.K., Sawchak S., Miller A.C., Lieberman J.A., Paul S.M., Breier A. // N. Engl. J. Med. 2021. V. 384. № 8. P. 717—726.
  88. Kidambi N., Elsayed O.H., El-Mallakh R.S. // Neuropsychiatr. Dis. Treat. 2023. V. 19. P. 1145—1151.
  89. Andersen M.B., Fink-Jensen A., Peacock L., Gerlach J., Bymaster F., Lundbaek J.A., Werge T. // Neuropsychopharmacology. 2003. V. 28. № 6. P. 1168—1175.
  90. Yeomans J.S. // Neuropsychopharmacology. 1995. V. 12. № 1. P. 3—16.
  91. Chapman C.A., Yeomans J.S., Blaha C.D., Blackburn J.R. // Neuroscience. 1997. V. 76. № 1. P. 177—186.
  92. Warburton D.M., Wesnes K., Edwards J., Larrad D. // Neuropsychobiology. 1985. V. 14. № 4. P. 198—202.
  93. Herkenham M., Little M.D., Bankiewicz K., Yang S.C., Markey S.P., Johannessen J.N. // Neuroscience. 1991. V. 40. № 1. P. 133—158.
  94. Haddad H.W., Boardman E., Williams B., Mouhaffel R., Kaye A.M., Kaye A.D. // Health Psychol. Res. 2022. V. 10. № 3. P. 34224.
  95. Le Merrer J., Rezai X., Scherrer G., Becker J.A., Kieffer B.L. // Neuropsychopharmacology. 2013. V. 38. № 6. P. 1050—1059.
  96. Izenwasser S., Staley J.K., Cohn S., Mash D.C. // Life Sci. 1999. V. 65. № 9. P. 857—862.
  97. Schoffelmeer A.N., Hogenboom F., Mulder A.H. // Br. J. Pharmacol. 1997. V. 122. № 3. P. 520—524.
  98. Babu K.M., McCurdy C.R., Boyer E.W. // Clin. Toxicol. (Phila). 2008. V. 46. № 2. P. 146—152.
  99. Cohen M., Solowij N., Carr V. // Aust. NZ J. Psychiatry. 2008. V. 42. № 5. P. 357—368.
  100. Volk D.W., Lewis D.A. // Biol. Psychiatry. 2016. V. 79. № 7. P. 595-603.
  101. Hotham J., Cannings-John R., Moore L., Hawkins J., Bonell C., Hickman M., Zammit S., Hines L.A., Adara L., Townson J., White J. // Br. J. Psychiatry. 2023. V. 223. № 4. P. 478—484.
  102. Hermanns-Clausen M., Kneisel S., Szabo B., Auwärter V. // Addiction. 2013. V. 108. № 3. P. 534—544.
  103. Силькис И.Г. // Журн. высш. нерв. деят. 2005. Т. 55. № 5. С. 592—607.
  104. Pizzolato K., Thacker D., Toro-Pagán N.D., Hanna A., Turgeon J., Matos A., Amin N., Michaud V. // Medicina (Kaunas). 2021. V. 57. № 10. P. 1107.
  105. Skolnick P., Crystal R. // J. Neural. Transm. (Vienna). 2020. V. 27. № 2. P. 279—286.
  106. Sun Y.G., Wu C.S., Lu H.C., Beierlein M. // J. Neurosci. 2011. V. 31. № 25. P. 9222—9230.
  107. Mrzljak L., Bergson C., Pappy M., Huff R., Levenson R., Goldman-Rakic P.S. // Nature. 1996. V. 381. № 6579. P. 245—248.
  108. Ujike H., Morita Y. // J. Pharmacol. Sci. 2004. V. 96. № 4. P. 376—381.
  109. Livet A., Salomé F. // Encephale. 2020. V. 46. № 3. P. 217—221.
  110. Diederen K.M., Daalman K., de Weijer A.D., Neggers S.F., van Gastel W., Blom J.D., Kahn R.S., Sommer I.E. // Schizophr. Bull. 2012. V. 38. № 5. P. 1074—1082.
  111. Slotema C.W., Daalman K., Blom J.D., Diederen K.M., Hoek H.W., Sommer I.E. // Psychol. Med. 2012.V. 42. № 9. P. 1873—1878.
  112. Zhuo C., Jiang D., Liu C., Lin X., Li J., Chen G., Xie Z., Xu Z., Zhou C., Zhu J. // Psychiatry Res. 2019. V. 274. P. 213—219.
  113. Hugdahl K., Nygård M., Falkenberg L.E., Kompus K., Westerhausen R., Kroken R., Johnsen E., Løberg E.M. // Schizophr. Res. 2013. V. 147. № 2-3. P. 301—309.
  114. Xie Y., He Y., Guan M., Wang Z., Zhou G., Ma Z., Wang H., Yin H. // Psychiatry Res. 2022. V. 309. P. 114393.
  115. Bohlken M.M., Hugdahl K., Sommer I.E. // Psychol. Med. 2017. V. 47. № 2. P. 199—208.
  116. Xie Y., Cai Y., Guan M., Wang Z., Ma Z., Fang P., Wang H. // Front. Psychiatry. 2022. V. 13. P. 971105.
  117. Xie Y., Guan M., Cai Y., Wang Z., Ma Z., Fang P., Wang H. // Psychiatry Res. 2023. V. 320. P. 114974.
  118. Shan P., Zhuo C., Ma X., Sang H., Zhong B., Lin X., Ji F., Chen M., Tian H., Zhao Y., Pan J. // J. Int. Med. Res. 2020. V. 48. № 4. 300060519875830.
  119. Badcock J.C., Brand R., Thomas N., Hayward M., Paulik G. // Psychiatry Res. 2021. V. 297. P. 113754.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the functional organization of parallel neural circuits cortex — basal ganglia — thalamus — cortex involved in the perception of auditory-verbal hallucinations. A1 is the primary auditory cortex; BSn is the outer part of the pale globe; VKTv and VKTd are the ventral and dorsal parts of the inner cranial body, respectively; VP is the ventral pallidum; VPP is the ventral field of the tire; MDYA is the mediodorsal nucleus of the thalamus; D1 and D2 are dopamine—sensitive receptors; NDv and NDd are ventral and dorsal parts of the lower two—lobe, respectively; PPIA — pedunculopontine nucleus; PFK — prefrontal cortex; PYA — nucleus accumbens (ventral striatum); RTYA - reticular thalamic nucleus; C-H and C—P — strionigral and striopallidar spiny striatum neurons; STA - subthalamic nucleus; CVr and PMk — reticular and compact parts of the black matter accordingly. Large light and dark circles are excitatory and inhibitory projection neurons, respectively; small light, dark and shaded

Download (201KB)
3. Fig. 2. The layout of receptors of different types on spike cells and cholinergic interneurons of the striatum, the effect on which affects the functioning of the cortex — basal ganglia — thalamus — cortex chain. DA — dopamine; A1 and A2A — adenosine receptors; M1 and M2 — muscarinic cholinergic receptors; CB1 — cannabinoid receptors; NK1 — tachykinin receptors; µ, κ, δ — opioid receptors. The dashed line is the effect of acetylcholine; the dashed line is the effect of dinorphin; the dashed line with two dots is the effect of enkephalin; the dotted line is the effect of substance R. The lines ending in small arrows and rhombuses are the potentiating and depressing effects of the neuromodulator on the effectiveness of excitatory transmission, respectively. For the rest of the designations, see Figure 1.

Download (494KB)

Copyright (c) 2024 Russian Academy of Sciences