Effect of parachlorophenylalanine, an inhibitor of the serotonin synthesis enzyme, on the brain dopamine system of cataleptic mice

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This study examined the effects of administration of parachlorophenylalanine (PCPA), an inhibitor of the key enzyme serotonin synthesis, on the freezing immobility and dopamine brain system in CBA/Lac mice with a hereditary predisposition to catalepsy. Administration of PCPA (300 mg/kg/day, 3 days) did not affect the duration of cataleptic freezing. Whereas, dopamine content decreased in the hypothalamus and midbrain and increased in the striatum and nucleus accumbens of mice after PCPA treatment. The administration of the drug did not affect the levels of DOPAC and HVA (dopamine metabolites) in the all studied brain structures. In addition, a PCPA-induced increase in the mRNA level of DRD2 receptor gene in the midbrain and Comt (catechol-O-methyltransferase) gene in the hypothalamus and midbrain were found. However, no effect of PCPA on the expression of DRD1 receptor gene and Th (tyrosine hydroxylase, key enzyme dopamine synthesis) gene in the brain was found. Thus, inhibition of the key enzyme of 5-HT synthesis had a significant effect on the brain DA system of CBA/Lac mice, with the greatest changes being found in the midbrain and hypothalamus.

Texto integral

Acesso é fechado

Sobre autores

D. Bazovkina

Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences

Autor responsável pela correspondência
Email: daryabazovkina@gmail.com
Rússia, Novosibirsk

E. Bazhenova

Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences

Email: daryabazovkina@gmail.com
Rússia, Novosibirsk

A. Kulikov

Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences

Email: daryabazovkina@gmail.com
Rússia, Novosibirsk

Bibliografia

  1. Kulikova E.A, Kulikov A.V. // Expert. Opin. Ther. Targets. 2019. V. 23. P. 655‒667.
  2. Toufexis D., Rivarola M.A., Lara H., Viau V. // J. Neuroendocrinol. 2014. V. 26. P. 573‒86.
  3. Kulikov A.V., Gainetdinov R.R., Ponimaskin E., Kalueff A., Naumenko V.S., Popova N.K. // Expert opinion on therapeutic targets. 2018. V. 22. P. 319–330.
  4. Walther D.J., Bader M. // Biochem. Pharmacol. 2003. V.66. P. 1673–1680.
  5. Baskerville T.A., Douglas A.J. // CNS Neurosci. Ther. 2010. V. 16. P. e92–123.
  6. Beaulieu J.M., Espinoza S., Gainetdinov R.R. // Br. J. Pharmacol. 2015. V. 172. P. 1‒23.
  7. Grace A.A. // Nat. Rev. Neurosci. 2016. V. 17. P. 524‒532.
  8. Dellu-Hagedorn F., Fitoussi A., De Deurwaerdère P. // J. Neurosci. Methods. 2017. V. 280. P. 54–63.
  9. Esposito E., Di Matteo V., Di Giovanni G. // Prog. Brain Res. 2008. V. 172. P. 3–6.
  10. Daniels J. // J. Neuropsychiatry Clin. Neurosci. 2009. V. 21. P. 371‒380.
  11. Cattarinussi G., Gugliotta A.A., Hirjak D., Wolf R.C., Sambataro F. // Schizophr. Res. 2024. V. 263. P. 194‒207.
  12. Kulikov A.V., Bazovkina D.V., Kondaurova E.M., Popova N.K. // Genes Brain Behav. 2008. V. 7. P. 506‒512.
  13. Popova N.K., Kulikov A.V. // Am. J. Med. Genet. 1995. V. 60. P. 214‒220.
  14. Скринская Ю.А., Попова Н.К., Никулина Е.М., Куликов А.В. // Журн. высш. нерв. деят-сти. 1997. Т. 47. № 6. С. 1032‒1039.
  15. Waku I., Magalhães M.S., Alves C.O., de Oliveira A.R. // Eur. J. Neurosci. 2021. V. 53. P. 3743‒3767.
  16. Куликова Е.А., Фурсенко Д.В., Баженова Е.Ю., Куликов А.В. // Молекулярная биология. 2020. T. 54. № 2. C. 313‒320.
  17. Koe B.K., Weisman A.J. // Pharmacol. Exp. Ther. 1966. V. 154. P. 499–516.
  18. Науменко Е.В., Попова Н.К., Старыгин А.Г. // Журнал общей биологии. 1971. T. 32. C. 731‒736.
  19. Kulikov A.V., Kozlachkova E.Y., Maslova G.B., Popova N.K. // Behav. Genet. 1993. V. 23. № 4. P. 379–384.
  20. Bazovkina D., Naumenko V., Bazhenova E., Kondaurova E. // International Journal of Molecular Sciences. 2021. Т. 22. № 21.
  21. Науменко В.С., Куликов А.В. // Молекулярная биология. 2006. Т. 40. № 1. С.37‒44.
  22. Naumenko V.S., Osipova D.V., Kulikov A.V., Kostina E.V. // Journal of Neuroscience Methods. 2008. Т. 170. № 2. С. 197–203.
  23. Samanin R., Garattini S. // Life Sci. 1975. V. 17. P. 1201–1209.
  24. Наркевич В.Б., Литвинова С.А., Роговский В.С., Цорин И.Б., Кудрин В.С. // Нейрохимия. 2021. T. 38. № 1. C. 59‒66.
  25. Klein M.O., Battagello D.S., Cardoso A.R., Hauser D.N., Bittencourt J.C., Correa R.G. // Cellular and molecular neurobiology. 2019. V. 39. P. 31–59.
  26. Di Giovanni G., Di Matteo V., Pierucci M., Benigno A., Esposito E. // Curr. Med. Chem. 2006. V. 13. P. 3069–3081.
  27. Porras G., Di Matteo V., Fracasso C., Lucas G., De Deurwaerdere P., Caccia S., Esposito E., Spampinato U. // Neuropsychopharmacology. 2002. V. 26. P. 311–324.
  28. Di Mascio M., Di Giovanni G., Di Matteo V., Prisco S., Esposito E. // Brain Research Bulletin. 1998. V. 46. P. 547–554.
  29. Chen N.N., Pan W.H. // J. Neurochem. 2000. V. 74. P. 2576–2582.
  30. Блохин В.Е., Пронина Т.С., Угрюмов М.В. // Нейрохимия. 2020. T. 37. № 1. C. 39‒45.
  31. Gudelsky G.A. // Psychoneuroendocrinology. 1981. V. 6. P. 3–16.
  32. Shi H.Y., Lu Y., Li Y.X., Tian F.Z. // China Med. Her. 2018. V. 15. P. 33–36.
  33. Si Y., Wang L., Lan J., Li H., Guo T., Chen X., Dong C., Ouyang Z., Chen S.Q. // Pharm. Biol. 2020. V. 58. P. 915‒924.
  34. Базовкина Д.В., Теренина Е.Е., Куликов А.В. // Бюллетень экспериментальной биологии и медицины. 2010. Т. 150. № 8. С. 190‒193.
  35. Naumenko V.S., Bazovkina D.V., Kondaurova E.M., Zubkov E.A., Kulikov A.V. // Genes Brain Behavior. 2010. Т. 9. № 5. С. 519‒524.
  36. Tikhonova M.A., Alperina E.L., Tolstikova T.G., Bazovkina D.V., Di V.Y., Idova G.V., Kulikov A.V., Popova N.K. // Neurosci Behav Physiol. 2010. V. 40. P. 521‒527.
  37. Waku I., Magalhães M.S., Alves C.O., de Oliveira A.R. // The European journal of neuroscience. 2021. V. 53. P.3743–3767.
  38. Tuerke K.J., Beninger R.J., Paquette J.J., Olmstead M.C. // Behav Pharmacol. 2011. V. 22. P. 558‒563.
  39. Moore C.F., Weerts E.M. // Psychopharmacology (Berl). 2022. V. 239. P. 1397‒1408.
  40. Klemm W.R. // Prog Neurobiol. 1989. V. 32. P. 403‒422.
  41. Li X., He C., Shen M., Wang M., Zhou J., Chen D., Zhang T., Pu Y. // J Ethnopharmacol. 2024.V. 319. P. 117331.
  42. Liu Y.M., Li J.C., Gu Y.F., Qiu R.H., Huang J.Y., Xue R., Li S., Zhang Y., Zhang K., Zhang Y.Z. // Neurochem Res. 2024. V. 49. P. 1150‒1165.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of parachlorophenylalanine administration (300 mg/kg, 3 days) on the levels of dopamine (a), its metabolites DOPAC (b), HVA (c) and the dopamine metabolism index (DOPAC+HVA/dopamine) (d) in the brain structures of CBA mice. *p < 0.05, **p < 0.01. N = 10 animals per group.

Baixar (357KB)
3. Fig. 2. Effect of parachlorophenylalanine administration (300 mg/kg, 3 days) on the expression of dopamine receptor genes Drd1 (a), Drd2 (b), catechol-O-methyltransferase gene Comt (dopamine metabolism enzyme) (c) and tyrosine hydroxylase gene Th (dopamine synthesis enzyme) (d) in the brain structures of CBA mice. Gene expression is presented as the ratio of the amount of cDNA of the studied genes to 100 copies of Polr2a cDNA. *p < 0.05, **p < 0.01. N = 10 animals per group.

Baixar (303KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024