Comparative analysis of changes in heart rate parameters of female and fetal rats under conditions of hemic hypoxia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We performed a comparative analysis of changes in the cardiac activity parameters under conditions of hemic hypoxia created by the introduction of sodium nitrite in female rats and their fetuses on gestation days 18 (E18) and 20 (E20). In the last trimester of prenatal development, under the conditions of the hemic hypoxia model, an increase in the sensitivity of the female organism to oxygen deficiency is observed at E20 compared to E18. Conversely, an analysis of the physiological indices of the fetuses revealed a greater resistance of the fetal cardiovascular system to hypoxia on E20 than on E18. Analysis of heart rate variability (HRV) showed the active participation of the catecholaminergic system in the emergency mobilization of energy and metabolic resources in fetuses.

Sobre autores

N. Vdovichenko

Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences

Autor responsável pela correspondência
Email: vdona@mail.ru
Rússia, St. Petersburg

Bibliografia

  1. Butruille L, De Jonckheere J, Flocteil M, Garabedian Ch, Houfflin-Debarge V, Storme L, Deruelle Ph, Logier R (2017) Parasympathetic tone variations according to umbilical cord pH at birth: A computerized fetal heart rate variability analysis. J Clin Monit Comput 31(6): 1197–1202. https://doi.org/10.1007/s10877-016-9957-y
  2. Martin CB Jr, de Haan J, van der Wildt B, Jongsma HW, Dieleman A, Arts TH (1979) Mechanisms of late decelerations in the fetal heart rate. A study with autonomic blocking agents in fetal lambs. Eur J Obstet Gynecol Reprod Biol 9(6): 361–373. https://doi.org/10.1016/0028-2243(79)90129-1
  3. Doret M, Constans A, Gaucherand P (2010) Bases physiologiques de l'analyse du rythme cardiaque foetal au cours du travail [Physiologic basis for fetal heart rate analysis during labour]. J Gynecol Obstet Biol Reprod (Paris) 39(4): 276–283. https://doi.org/10.1016/j.jgyn.2010.01.004
  4. Turner JM, Mitchell MD, Kumar SS (2020) The physiology of intrapartum fetal compromise at term. Am J Obstet Gynecol 222(1): 17–26. https://doi.org/10.1016/j.ajog.2019.07.032
  5. Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lea CA (2022) Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 600 (3): 431–450. https://doi.org/10.1113/JP282276
  6. Tarvonen MJ, Lear CA, Andersson S, Gunn AJ, Teramo KA (2022) Increased variability of fetal heart rate during labour: A review of preclinical and clinical studies. BJOG 129 (12): 2070–2081. https://doi.org/10.1111/1471–0528.17234
  7. Pagani M (2002) Heart rate variability and pregnancy. J Hypertens Nov 20 (11): 2125–2126. https://doi.org/10.1097/00004872–200211000–00004
  8. Khlybova SV, Tsirkin VI, Dvoryanskii SA, Makarova IA, Trukhin AN (2008) Heart rate variability in normal and complicated pregnancies. Human Physiol 34 (5): 625–632. https://doi.org/10.1134/S0362119708050113
  9. Ходырев ГН, Новоселова АВ, Хлыбова СВ, Дмитриева СЛ (2013) Оценка вариабельности сердечного ритма у беременных женщин. Вопр гинекол акушер перинатол 12 (2): 16–21. [Khodyrev GN, Novoselova AV, Khlybova SV, Dmitriyeva SL (2013) Assessment of heart rate variability in pregnant women. Vopr ginekol akusher perinatal 12 (2): 16–21. (In Russ)].
  10. Cruz-Aleixo AS, Castro Ferreira Lima M, Holanda DE Albuquerque AL, Tortorelli Teixeira R, Alves DE Paula R, Grandi MC, Laurenti Ferreira DO, Harumi Tsunemi M, Biagio Chiacchio S, Gomes LourenÇo ML (2021) Heart rate variability in Dorper sheep in the fetal and neonatal periods until 120 days of age: Use of the technique in the field. J Veterin Med Sci 83 (1): 17–27. https://doi.org/10.1292/jvms.20–0292
  11. Garabedian C, Champion C, Servan-Schreiber E, Butruille L, Aubry E, Sharma D, Logier R, Deruelle P, Storme L, Houfflin-Debarge V, De Jonckheere J (2017) A new analysis of heart rate variability in the assessment of fetal parasympathetic activity: An experimental study in a fetal sheep model. PloS One 12 (7): e0180653. https://doi.org/10.1371/journal.pone.0180653
  12. Shaw CJ, Allison BJ, Itani N, Botting KJ, Niu Y, Lees CC, Giussani DA (2018) Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J Physiol 596 (23): 6105–6119. https://doi.org/10.1113/JP275659
  13. Kohn MC, Melnick RL, Ye F, Portier CJ (2002) Pharmacokinetics of sodium nitrite–induced methemoglobinemia in the rat. Drug Metab Dispos 30 (6): 676–683. https://doi.org/10.1124/dmd.30.6.676
  14. Kinoshita S, Kakihira H (1982) The influence of sodium nitrite upon the physical functions of mice. Sangyo Igaku 24 (5): 471–474. https://doi.org/10.1539/joh1959.24.471
  15. Шумилова ТЕ, Ноздрачев АД, Январева ИН, Шерешков ВИ (2004) Ионный состав крови крыс при острой нитритной гипоксии. Вестн Санкт-Петербургск универ 3(3): 41–49. [Shumilova TYe, Nozdrachev AD, Yanvareva IN, Shereshkov VI (2004) Ionic composition of rat blood during acute nitrite hypoxia. Vestn Saint Petersburg Univer 3(3): 41–49. (In Russ)].
  16. Cigerci IH, Fidan AF, Konuk M, Yuksel H, Kucukkurt I, Eryavuz A, Sozbilir NB (2009) The protective potential of Yucca schidigera (Sarsaponin 30) against nitrite-induced oxidative stress in rats. J Nat Med 63 (3): 311–317. https://doi.org/10.1007/s11418–009–0338–4
  17. Kuznetsov SV, Goncharov NV, Glashkina LM (2005) Change of parameters of functioning of the cardiovascular and respiratory systems in rats of different ages under effects of low doses of the cholinesterase inhibitor phosphacol. J Evol Biochem Physiol 41(2): 201–210. https://doi.org/10.1007/s10893–005–0055x
  18. Timofeeva OP, Vdovichenko ND, Kuznetsov SV (2012) Effect of Change in Activity Level of Catecholaminergic Systems on Motor, Respiratory, and Cardiac Activities in Fetal Rats. J Evol Biochem Physiol 48(3): 310–321. https://doi.org/10.1134/S0022093012030085
  19. Мясоедов ЕЕ, Назаров СБ (2004) Реакция эритроцитарной системы взрослых крыс на острую нитритную интоксикацию. Патол физиол эксп терапия 2: 16–18. [Myasoyedov ЕЕ, Nazarov SB (2004) Reaction of the erythrocyte system of adult rats to acute nitrite intoxication. Pathol Physiol Exp Therapy 2: 16–18. (In Russ)].
  20. Boardman A, Schlindwein FS, Thakor NV, Kimura T, Geocadin RG (2002) Detection of asphyxia using heart rate variability. Med Biol Eng Comput 40 (6): 618–624. https://doi.org/10.1007/BF02345299
  21. Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L (2023) Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol Advance online publ. https://doi.org/10.1113/JP284560
  22. Гудков ГВ, Помоpцев АВ, Федоpович ОК (2001) Комплексное исследование функционального состояния вегетативной нервной системы у беременных с гестозом. Акуш и гинекол 3: 45–50. [Gudkov GV, Pomoptsev AV, Fedopovich OK (2001) Comprehensive study of the functional state of the autonomic nervous system in pregnant women with gestosis. Akusher Ginekol 3: 45–50. (In Russ)].
  23. Gilson GJ, Mosher MD, Conrad KP (1992) Systemic hemodynamics and oxygen transport during pregnancy in chronically instrumented, conscious rats. Am J Physiol heart Circ Physiol 263(6): H1911–H918. https://doi.org/10.1152/ajpheart.1992.263.6.H1911
  24. Meah VL, Cockcroft JR, Backx K, Shave R, Stöhr EJ (2016) Cardiac output and related haemodynamics during pregnancy: A series of meta-analyses. Heart 102(7): 518–526 https://doi.org/10.1136/heartjnl-2015-308476
  25. Eke AC (2021) An update on the physiologic changes during pregnancy and their impact on drug pharmacokinetics and pharmacogenomics. J Basic Clin Physiol Pharmacol 33(5): 581–598. https://doi.org/10.1515/jbcpp-2021-0312
  26. Fedele L, Brand T (2020) The intrinsic cardiac nervous system and its role in cardiac pacemaking and conduction. J Cardiovasc Dev Dis 7: 54. https://doi.org/10.3390/jcdd7040054
  27. Kowalski WJ, Garcia–Pak IH, Li W, Uosaki H, Tampakakis E, Zou J, Lin Y, Patterson K, Kwon C, Mukouyama YS (2022) Sympathetic neurons regulate cardiomyocyte maturation in culture. Front Cell Dev Biol 10: 850645. https://doi.org/10.3389/fcell.2022.850645
  28. Pappano AJ (1977) Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacol Rev 29: 3–33.
  29. Sharma D, Shastri S, Sharma P (2016) Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin Med Insights Pediatr 10: 67–83. https://doi.org/10.4137/CMPed.S40070
  30. Rizzo G, Arduini D (2009) Intrauterine growth restriction: diagnosis and management. A review. Minerva Ginecol 61(5): 411–420.
  31. Resnik R (2002) Intrauterine growth restriction. Obstet Gynecol 99(3): 490–496. https://doi.org/10.1016/s0029-7844(01)01780-x
  32. Nedoma J, Slavíková J, Tucek S (1986) Muscarinic acetylcholine receptors in the heart of rats before and after birth. Pflugers Arch 406 (1): 45–50. https://doi.org/10.1007/BF00582951

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025