Analysis of Properties of Polymer Composites with Various Types of Fillers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of structure formation of composite building materials (KSM) on different polymer binders are presented. It is shown that one of the most significant components of KSM are fillers, which help to improve their structural and operational characteristics. This work is devoted to the analysis of the results of an experimental study of the properties of epoxy composites with fillers having various elastic-plastic and strength properties. The research was carried out in three stages: at the first stage, studies were conducted aimed at assessing the influence of the nature of the filler on the curing processes of KSM; at the second, the influence of the type of filler and its quantitative content on the strength of composites was established, at the third, compositions were optimized using fillers with different indicators of grain composition and elastic-plastic properties. Powders of glass, dolomite, thermolite, and diatomite were considered as fillers at the first and second stages of the research, and powders of glass, ceramics, and chalk were considered at the second stage. The research at the third stage was carried out using mathematical methods of experiment planning with the construction of a planning matrix for a complete factor experiment and the determination of the values of the response functions relative to the encoded factors. The physico-mechanical properties, degree of curing, and chemical resistance of filled epoxy CCM have been established. On the basis of artificial neural networks, the maximum properties of the studied composites with fillers were determined. An assessment of structural properties based on rank correlation is also proposed. The results of the research can be used to predict the properties of KSM, as well as to clarify the extreme parameters of the properties. The dependences of changes in the properties of polymer composites on the surface characteristics, the dispersion of fillers and the degree of filling were established; preferred fillers for epoxy composites were determined; fillers were determined to assess the effect of elastic surface properties of composites, allowing to improve the strength and deformability of polymer composites; regression models were obtained based on a complete factorial experiment; an assessment of the «structural stability» of the studied composites using Pearson, Kendall, Spearman rank correlation; On the basis of artificial neural networks, the extreme properties of the studied composites with fillers were determined, neural networks.

Full Text

Restricted Access

About the authors

V. T. Yerofeyev

National Research Moscow State University of Civil Engineering; Scientific-Research Institute of Building Physics of RAACS

Author for correspondence.
Email: erofeevvt@bk.ru

Doctor of Sciences (Engineering)

Russian Federation, Moscow; Moscow

V. V. Afonin

National Research Mordovia State University

Email: vvafonin53@yandex.ru

Candidate of Sciences (Engineering)

Russian Federation, Saransk

M. M. Zotkina

National Research Mordovia State University

Email: zotkina.mm@yandex.ru

Candidate of Sciences (Engineering)

Réunion, Saransk

K. S. Stenechkin

National Research Moscow State University of Civil Engineering

Email: stenechkina522@mail.ru

Candidate of Sciences (Engineering)

Russian Federation, Moscow

T. P. Tyuryakhina

Scientific-Research Institute of Building Physics of RAACS

Email: Kitana1908@mail.ru

Candidate of Sciences (Engineering)

Russian Federation, Moscow

A. V. Lazarev

Scientific-Research Institute of Building Physics of RAACS

Email: laz@mail.ru

Candidate of Sciences (Engineering)

Russian Federation, Moscow

References

  1. Karpenko N.I., Karpenko S.N., Yarmakovsky V.N., Erofeev V.T. On modern methods of ensuring the durability of reinforced concrete structures. ACADEMIA. Arhitektura i stroitel’stvo. 2015. No. 1, pp. 93–102. (In Russian).
  2. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Polimernye kompozicionnye materialy [Polymer composite materials: textbook]. Moscow: ASV, 2013. 480 p.
  3. Sokolova Yu.A. Epoksidnyye polimerbetony, modifitsirovannyye neftyanymi bitumami, kamennougol’noy i karbamidnoy smolami i aminoproizvodnymi soyedineniyami / pod. red. Yu.A. Sokolovoi, V.T. Yerofeyeva [Epoxy polymer concretes modified with petroleum bitumen, coal and urea resins and amino derivatives / under. ed. by V.T. Erofeev]. Moscow: Paleotype, 2008. 244 p. смолами и аминопроизводными соединениями / Под ред. Ю.А. Соко- ловой, В.Т. Ерофеева. М.: Палеотип, 2008. 244 с.
  4. Erofeev V., Tyuryakhin A., Tyuryakhina T. Flat space of values of volume module of grain composite with spherical fill-lem. International Journal of Civial Engineering and Technology (IJCIET). 2019. Vol. 10 (8), pp. 333–342.
  5. Ma P.C., Mo S.Y., Tang B.Z., Kim J.K. Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. 2010. Carbon. Vol. 48. Iss. 6, pp. 1824–1834. doi: 10.1016/j.carbon.2010.01.028
  6. Rahmat M., Hubert P. Carbon nanotube-polymer interactions in nanocomposites: A review. Composites Science and Technology. 2011. Vol. 72. Iss. 1, pp. 72–84. doi: 10.1016/j.compscitech.2011.10.002
  7. Kathi J., Rhee K.Y., Lee J.H. Effect of chemical functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane on mechanical and morphological properties of epoxy nanocomposites. Composites. Part A. Applied Science and Manufacturing. 2009. Vol. 40. Iss. 6, pp. 800–809. doi: 10.1016/j.compositesa.2009.04.001
  8. Rafiee M., Rafiee J., Srivastava I. Fracture and fatigue in graphene nanocomposites. Nano. Micro. Small. 2010. Vol. 6. Iss. 2, pp. 179–183. https://doi.org/10.1002/smll.200901480
  9. Sun L., Gibson R.F., Gordaninejad F., Suhr J. Energy absorption capability of nanocomposites: a review. Composites Science and Technology. 2009. Vol. 69. Iss. 14, pp. 2392–2409. doi: 10.1016/j.compscitech.2009.06.020
  10. Tang L.Ch., Zhang H., Han J. Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Composites Science and Technology. 2011. Vol. 72, pp. 7–13. doi: 10.1016/j.compscitech.2011.07.016
  11. Ni Y., Chen L., Teng K., Shi J. Superior mechanical properties of epoxy composites reinforced by 3D interconnected graphene skeleton. ACS Applied Materials & Interfaces. 2015. Vol. 7. Iss. 21, pp. 11583–11591. doi: 10.1021/acsami.5b02552
  12. Rahman R., Haque A. Molecular modeling of crosslinkedgraphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties. Engineering. Composites Part B: Engineering. 2013. Vol. 54, pp. 353–364. doi: 10.1016/J.COMPOSITESB.2013.05.034
  13. Qiao R., Brinson L.C. Simulation of interphase percolation and gradients in polymer nanocomposites. Composites Science and Technology. Composites Science and Technology. 2009. Vol. 69. Iss. 3–4, pp. 491–499. doi: 10.1016/j.compscitech. 2008.11.022
  14. Ayatollahi M.R., Shadlou S., Shokrieh M., Chitsazzadeh M. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polymer Testing. 2011. Vol. 30. Iss. 5, pp. 548–556. doi: 10.1016/j.polymertesting.2011.04.008
  15. Hamming L., Qiao R., Messersmith P., Brinson L.C. Effects of dispersion and interfacial modification on the macroscale properties of TiO2 polymer-matrix nanocomposites. Composites Science and Techno- logy. 2009. Vol. 69, Iss. 11–12, pp. 1880–1886. doi: 10.1016/j.compscitech.2009.04.005
  16. Yang S., Yu S., Woomin K., Do-Suck H., Maenghyo C. Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer. 2012. Vol. 53. Iss. 2, pp. 623–6332012. doi: 10.1016/j.polymer.2011.11.052
  17. Erofeev V.T., Afonin V.V., El’chishheva T.F., Zotkina M.M., Erofeeva I.V. Using scanned images to assess salt formation on the surface of cementitious composites. Vestnik MSUCE. 2020. Vol. 15. No. 11, pp. 1523–1533. (In Russian). doi: 10.22227/1997-0935.2020.11.1523-1533
  18. Erofeev T., Likomaskina M., Afonin V., Likomaskin A., Tolmacheva V., Kotlyarskaya I. Microbiological resistance of sand-bitumen concrete. AlfaBuild. 2022. Vol. 25. Iss. 5. 2503. doi: 10.57728/ALF.25.3
  19. Maksimova I.N., Erofeeva I.V., Afonin V.V., Emelya- nov D.V. Assessing the quality of cement composites exposed to a temperature-aggressive environment using interpolation and correlation. Vestnik MSUCE. 2021. Vol. 16. Iss. 11, pp. 1473–1482. (In Russian). doi: 10.22227/1997-0935.2021.11.1473-1482
  20. Erofeeva I.V, Afonin V.V., Fedortsov V.A., Emelyanov D.V. Research of behavior of cement composites in conditions of high humidity and variable positive temperatures. IOP Conference Series Materials Science and Engineering. 2020. Vol. 972 (1). 012052. doi: 10.1088/1757-899X/972/1/012052
  21. Tarasyuk I.A., Kravchuk A.S. Narrowing of the Voigt-Reuss «Fork» in the theory of elastic, structurally inhomogeneous, on average, isotropic composite bodies without the use of variational principles. APRIORI. Series: Natural and technical sciences. 2014. No. 3, p. 8. (In Russian).
  22. Gumenyuk A.N., Polyanskikh I.S., Petrunin S.M., Shevchenko F.E., Pervushin G.N. Multifunctional layered composite material used in construction. Vestnik MSUCE. 2021. Vol. 16. No. 6, pp. 688–697. (In Russian). doi: 10.22227/1997-0935.2021.6.688-697
  23. Safarov A.R., Dorozhinsky V.B., Andreev V.I. Implementation of a numerical model of concrete CSCM for domestic classes of concrete. Vestnik MSUCE. 2023. Vol. 18. No. 4, pp. 545–555. (In Russian). doi: 10.22227/1997-0935.2023.4.545-555
  24. Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fediuk R.S. et al. Mechanical and electrical properties of concrete modified by carbon nanoparticles. Magazine of Civil Engineering. 2019. Vol. 8. No. 92, pp. 163–172. doi: 10.18720/MCE.92.14
  25. Yakovlev G., Vít Č., Polyanskikh I., Gordina A., Pudov I., Gumenyuk A., Smirnova O. The effect of complex modification on the impedance of cement matrices. Materials. 2021. Vol. 14. Iss. 3. 557. doi: 10.3390/ma14030557
  26. Lam N.D.T., Samchenko S.V., Lam T.V., Shvetso- va V.A. Optimization of the proportions of a composite binder containing multicomponent additives. Vestnik MSUCE. 2023. Iss. 18. No. 3, pp. 427–437. (In Russian). doi: 10.22227/1997-0935.2023.3.427-437
  27. Omidi M., Milani A.S., Seethaler R., Arasteh R. Prediction of the mechanical characteristics of mul- ti-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon. 2010. Vol. 48. Iss. 11, pp. 3218–3228. doi: 10.1016/j.carbon.2010.05.007
  28. Lazarev A.V., Kaznacheev S.V., Erofeev V.T., Bredikhin V.V., Khudyakov V.A. Optimization of compositions of filled epoxy composites in terms of strength indicators. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2012. No. 2–3, pp. 235–239. (In Russian).
  29. Erofeev V.T., Volgina E.V., Kaznacheev S.V., Kreto- va V.M. Research on the strength of vinylester composites. Izvestiya of the Southwestern State University. Series: Equipment and technology. 2013. No. 4, pp. 81–88. (In Russian).
  30. Bobryshev A.N., Erofeev V.T., Kozomazov V.N. Fizika i sinergetika dispersno-neuporyadochennykh kondensirovannykh kompozitnykh sistem [Physics and synergetics of dispersed disordered condensed composite systems]. St. Petersburg: Nauka. 2012. 473 p.
  31. Gibbons J.D. Nonparametric Statistical Inference. New York. Basel: CRC Press. 2010. 652 p.
  32. Kim I., Balakrishnan S., Wasserman L. Robust multivariate nonparametric tests via projection averaging. Annals of Statistics. 2020. Vol. 48. Iss. 6, pp. 3417–3441. https://doi.org/10.48550/arXiv.1803.00715
  33. Pan W., Tian Y., Wang X., Zhang H. Ball divergence: nonparametric two sample test. Annals of Statistics. 2018. Vol. 46. Iss. 3, pp. 1109–1137. doi: 10.1214/17-AOS1579
  34. Kotlyar M., Fuhrman S., Ableson A., Somogyi R. Spearman correlation identifies statistically significant gene expression clusters in spinal cord develop- ment and injury. Neurochemical Research. 2004, pp. 1133–1140. doi: 10.1023/a:1020969208033
  35. Kobzar A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. Moscow: Fizmatlit. 2006. 816 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A functional diagram for studying the properties of composites

Download (77KB)
3. Fig 2. Dependences of changes in the strength of polymer composites on the content of glass (а), dolomite (b), thermolite (c), diatomite (d) during compression (Rcomp), and bending (Rbend)

Download (310KB)
4. Fig. 3. Probability distribution diagram of the null hypothesis

Download (78KB)

Copyright (c) 2024 ООО РИФ "СТРОЙМАТЕРИАЛЫ"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies