Обобщённые решения первой краевой задачи для дифференциально-разностного уравнения в дивергентном виде на интервале конечной длины

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассмотрена задача Дирихле для дифференциально-разностного уравнения второго порядка в дивергентном виде с переменными коэффициентами на конечном интервале $Q=(0,d).$ Исследованы условия на правую часть уравнения, обеспечивающие гладкость обобщённого решения на всём интервале. Доказано, что обобщённое решение задачи принадлежит пространству Соболева $W_2^2(Q)$ в случае ортогональности правой части в пространстве $L_2(Q)$ конечному числу линейно независимых функций.

Об авторах

А. Л Скубачевский

Российский университет дружбы народов имени Патриса Лумумбы;Московский центр фундаментальной и прикладной математики

Email: alskubachevskii@yandex.ru
Москва, Россия

Н. О Иванов

Российский университет дружбы народов имени Патриса Лумумбы

Автор, ответственный за переписку.
Email: noivanov1@gmail.com
Москва, Россия

Список литературы

  1. Каменский Г.А., Мышкис А.Д. Постановка краевых задач для дифференциальных уравнений с отклоняющимися аргументами в старших членах // Дифференц. уравнения. 1974. Т. 10. № 3. С. 409-418.
  2. Каменский А.Г. Краевые задачи для уравнений с формально симметричными дифференциально-разностными операторами // Дифференц. уравнения. 1976. Т. 12. № 5. С. 815-824.
  3. Каменский Г.А., Мышкис А.Д., Скубачевский А.Л. О гладких решениях краевой задачи для дифференциально-разностного уравнения нейтрального типа // Укр. мат. журн. 1985. Т. 37. № 5. С. 581-585.
  4. Skubachevskii A.L. Elliptic functional differential equations and applications // Operator Theory. Advances and Applications. Basel; Boston; Berlin, 1997. V. 91.
  5. Скубачевский А.Л., Иванов Н.О. Об обобщённых решениях второй краевой задачи для дифференциально-разностных уравнений с переменными коэффициентами // Соврем. математика. Фунд. направления. 2021. Т. 67. № 3. С. 576-595.
  6. Скубачевский А.Л., Иванов Н.О. Об обобщённых решениях второй краевой задачи для дифференциально-разностных уравнений с переменными коэффициентами на интервале нецелой длины // Мат. заметки. 2022. Т. 111. № 6. С. 873-886.
  7. Неверова Д.А., Скубачевский А.Л. О классических и обобщённых решениях краевых задач для дифференциально-разностных уравнений с переменными коэффициентами // Мат. заметки. 2013. Т. 94. № 5. С. 702-719.
  8. Neverova D.A. Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations // Funct. Differ. Equat. 2014. V. 21. P. 47-65.
  9. Лийко В.В., Скубачевский А.Л. Сильно эллиптические дифференциально-разностные уравнения со смешанными краевыми условиями в цилиндрической области // Соврем. математика. Фунд. направления. 2019. Т. 65. № 4. С. 635-654.
  10. Лийко В.В., Скубачевский А.Л. Смешанные задачи для сильно эллиптических дифференциально-разностных уравнений в цилиндре // Мат. заметки. 2020. Т. 107. № 5. С. 693-716.
  11. Красовский Н.Н. Теория управления движением. М., 1968.
  12. Осипов Ю.С. О стабилизации управляемых систем с запаздыванием // Дифференц. уравнения. 1965. Т. 1. № 5. С. 605-618.
  13. Кряжимский А.В., Максимов В.И., Осипов Ю.С. О позиционном моделировании в динамических системах // Прикл. математика и механика. 1983. Т. 47. № 6. С. 883-890.
  14. Скубачевский А.Л. К задаче об успокоении системы управления с последействием // Докл. РАН. 1994. Т. 335. № 2. C. 157-160.
  15. Адхамова А.Ш., Скубачевский А.Л. Об одной задаче успокоения нестационарной системы управления с последействием // Соврем. математика. Фунд. направления. 2019. Т. 65. № 4. С. 547-556.
  16. Onanov G.G., Skubachevskii A.L. Nonlocal problems in the mechanics of three-layer shells // Math. Model. Nat. Phenom. 2017. V. 12. № 6. P. 192-207.
  17. Onanov G.G., Tsvetkov E.L. On the minimum of the energy functional with respect to functions with a deviating argument in a stationary problem of elasticity theory // Russ. J. Math. Phys. 1995. V. 3. № 4. P. 491-500.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2023