M2-Изоформа пируваткиназы PKM: фундаментальные и трансляционные аспекты в контексте молекулярной диагностики злокачественных опухолей человека
- Авторы: Белоусов П.В.1
-
Учреждения:
- Институт молекулярной биологии им. В.А. Энгельгардта РАН
- Выпуск: Том 90, № 4 (2025)
- Страницы: 509-530
- Раздел: Статьи
- URL: https://cardiosomatics.orscience.ru/0320-9725/article/view/685802
- DOI: https://doi.org/10.31857/S0320972525040026
- EDN: https://elibrary.ru/IHTJSR
- ID: 685802
Цитировать
Аннотация
M2-изоформа гликолитического фермента пируваткиназы PKM (PKM2) является одним из центральных фокусов внимания современных исследований в области онкометаболизма. Она представляет собой высокоадаптивный метаболический мастер-регулятор, осуществляющий переключение между режимами генерации энергии за счёт высокоэффективной конверсии фосфоенолпирувата в пируват с образованием ATP и накопления метаболического ресурса в виде гликолитических интермедиатов, включающихся в процессы биосинтеза аминокислот, нуклеотидов и жирных кислот. Характеризующаяся высокой функциональной и регуляторной пластичностью PKM2 представляет собой идеальный инструмент для метаболической адаптации PKM2-экспрессирующих клеток, в особенности клеток злокачественных опухолей, демонстрирующих резко аномальные метаболические потребности. Молекулярные дактилограммы PKM2-зависимой метаболической адаптации, такие как гиперэкспрессия PKM2, сдвиг равновесия тетрамер/димер PKM2 в сторону последнего и его выход в циркуляцию, а также иммунный ответ против PKM2 могут служить биомаркерами широкого спектра злокачественных новообразований. Настоящий обзор посвящён анализу возможностей молекулярной дактилографии PKM2-зависимой метаболической адаптации для диагностики злокачественных опухолей человека в контексте фундаментальных аспектов биологии PKM2 и исторических и современных воззрений на процесс PKM2-зависимой метаболической адаптации.
Полный текст

Об авторах
П. В. Белоусов
Институт молекулярной биологии им. В.А. Энгельгардта РАН
Автор, ответственный за переписку.
Email: belousp@gmail.com
Россия, Москва
Список литературы
- Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.
- Hanahan, D. (2022) Hallmarks of cancer: new dimensions, Cancer Discov., 12, 31-46, https://doi.org/10.1158/ 2159-8290.CD-21-1059.
- Warburg, O., and Minami, S. (1923) Versuche an Überlebendem Carcinom-Gewebe [In German], Klin. Wochenschr., 2, 776-777, https://doi.org/10.1007/BF01712130.
- Warburg, O., Posener, K., and Negelein, E. (1924) Über Den Stoffwechsel Der Carcinomzelle [In German], Naturwissenschaften, 12, 1131-1137, https://doi.org/10.1007/BF01504608.
- Warburg, O. (1956) On respiratory impairment in cancer cells, Science, 124, 269-270, https://doi.org/10.1126/science.124.3215.269.
- Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309-314, https://doi.org/10.1126/science. 123.3191.309.
- Chance, B., and Castor, L. N. (1952) Some patterns of the respiratory pigments of ascites tumors of mice, Science, 116, 200-202, https://doi.org/10.1126/science.116.3008.200.
- Chance, B. (1953) Dynamics of respiratory pigments of ascites tumor cells, Trans. N. Y. Acad. Sci., 16, 74-75, https://doi.org/10.1111/j.2164-0947.1953.tb01322.x.
- Chance, B., and Hess, B. (1956) On the control of metabolism in ascites tumor cell suspensions, Ann. N. Y. Acad. Sci., 63, 1008-1016, https://doi.org/10.1111/j.1749-6632.1956.tb50908.x.
- Chance, B., and Hess, B. (1959) Metabolic control mechanisms: III. Kinetics of oxygen utilization in ascites tumor cells, J. Biol. Chem., 234, 2416-2420, https://doi.org/10.1016/S0021-9258(18)69827-8.
- Weinhouse, S. (1956) On respiratory impairment in cancer cells, Science, 124, 267-269, https://doi.org/10.1126/science.124.3215.267.
- Aisenberg, A. C. (1961) The Glycolysis and Respiration of Tumors, Academic press.
- Koppenol, W. H., Bounds, P. L., and Dang, C. V. (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer, 11, 325-337, https://doi.org/10.1038/nrc3038.
- Kubota, K. (2001) From tumor biology to clinical PET: a review of positron emission tomography (PET) in oncology, Ann. Nucl. Med., 15, 471-486, https://doi.org/10.1007/BF02988499.
- Vallabhajosula, S. (2007) 18F-Labeled positron emission tomographic radiopharmaceuticals in oncology: An overview of radiochemistry and mechanisms of tumor localization, in Seminars in Nuclear Medicine, Vol. 37, Elsevier, pp. 400-419, https://doi.org/10.1053/j.semnuclmed.2007.08.004.
- Hess, S., Blomberg, B. A., Zhu, H. J., Høilund-Carlsen, P. F., and Alavi, A. (2014) The pivotal role of FDG-PET/CT in modern medicine, Acad. Radiol., 21, 232-249, https://doi.org/10.1016/j.acra.2013.11.002.
- Ziai, P., Hayeri, M. R., Salei, A., Salavati, A., Houshmand, S., Alavi, A., and Teytelboym, O. M. (2016) Role of optimal quantification of FDG PET imaging in the clinical practice of radiology, Radiographics, 36, 481-496, https://doi.org/10.1148/rg.2016150102.
- Schurr, A. (2017) Lactate, Not Pyruvate, Is the End Product of Glucose Metabolism via Glycolysis, In Carbohydrate (Caliskan, M., Kavakli, I. H., and Oz, G. C., eds.) InTech, https://doi.org/10.5772/66699.
- Kim, J.-A., and Yeom, Y. I. (2018) Metabolic signaling to epigenetic alterations in cancer, Biomol. Ther., 26, 69-80, https://doi.org/10.4062/biomolther.2017.185.
- Wu, Z., Wu, J., Zhao, Q., Fu, S., and Jin, J. (2020) Emerging roles of aerobic glycolysis in breast cancer, Clin. Transl. Oncol., 22, 631-646, https://doi.org/10.1007/s12094-019-02187-8.
- Sun, X., Peng, Y., Zhao, J., Xie, Z., Lei, X., and Tang, G. (2021) Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors, Bioorganic Chem., 112, 104891, https://doi.org/10.1016/j.bioorg. 2021.104891.
- Harada, K., Saheki, S., Wada, K., and Tanaka, T. (1978) Purification of four pyruvate kinase isozymes of rats by affinity elution chromatography, Biochim. Biophys. Acta Enzymol., 524, 327-339, https://doi.org/10.1016/ 0005-2744(78)90169-9.
- Mazurek, S. (2011) Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells, Int. J. Biochem. Cell Biol., 43, 969-980, https://doi.org/10.1016/j.biocel.2010.02.005.
- Van Heyningen, V., Bobrow, M., Bodmer, W. F., Gardiner, S. E., Povey, S., and Hopkinson, D. A. (1975) Chromosome assignment of some human enzyme loci: mitochondrial malate dehydrogenase to 7, mannosephosphate isomerase and pyruvate kinase to 15 and probably, esterase D to 13, Ann. Hum. Genet., 38, 295-303, https://doi.org/10.1111/j.1469-1809.1975.tb00613.x.
- Takenaka, M., Noguchi, T., Sadahiro, S., Hirai, H., Yamada, K., Matsuda, T., Imai, E., and Tanaka, T. (1991) Isolation and characterization of the human pyruvate kinase M gene, Eur. J. Biochem., 198, 101-106, https://doi.org/10.1111/j.1432-1033.1991.tb15991.x.
- Clower, C. V., Chatterjee, D., Wang, Z., Cantley, L. C., Vander Heiden, M. G., and Krainer, A. R. (2010) The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism, Proc. Natl. Acad. Sci. USA, 107, 1894-1899, https://doi.org/10.1073/pnas.0914845107.
- David, C. J., Chen, M., Assanah, M., Canoll, P., and Manley, J. L. (2010) HnRNP proteins controlled by C-Myc deregulate pyruvate kinase mRNA splicing in cancer, Nature, 463, 364-368, https://doi.org/10.1038/ nature08697.
- Wang, Z., Chatterjee, D., Jeon, H. Y., Akerman, M., Vander Heiden, M. G., Cantley, L. C., and Krainer, A. R. (2012) Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons, J. Mol. Cell Biol., 4, 79-87, https://doi.org/10.1093/jmcb/mjr030.
- Noguchi, T., Yamada, K., Inoue, H., Matsuda, T., and Tanaka, T. (1987) The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters, J. Biol. Chem., 262, 14366-14371, https://doi.org/10.1016/S0021-9258(18)47947-1.
- Yamada, K., and Noguchi, T. (1999) Nutrient and hormonal regulation of pyruvate kinase gene expression, Biochem. J., 337, 1-11, https://doi.org/10.1042/bj3370001.
- Bluemlein, K., Grüning, N.-M., Feichtinger, R. G., Lehrach, H., Kofler, B., and Ralser, M. (2011) No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis, Oncotarget, 2, 393-400, https://doi.org/10.18632/oncotarget.278.
- Desai, S., Ding, M., Wang, B., Lu, Z., Zhao, Q., Shaw, K., Yung, W. K. A., Weinstein, J. N., Tan, M., and Yao, J. (2014) Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers, Oncotarget, 5, 8202-8210, https://doi.org/10.18632/oncotarget.1159.
- Zhan, C., Yan, L., Wang, L., Ma, J., Jiang, W., Zhang, Y., Shi, Y., and Wang, Q. (2015) Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis, PLoS One, 10, e0118663, https://doi.org/10.1371/journal.pone.0118663.
- Dombrauckas, J. D., Santarsiero, B. D., and Mesecar, A. D. (2005) Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis, Biochemistry, 44, 9417-9429, https://doi.org/10.1021/bi0474923.
- Imamura, K., and Tanaka, T. (1972) Multimolecular forms of pyruvate kinase from rat and other mammalian tissues: I. Electrophoretic studies, J. Biochem., 71, 1043-1051, https://doi.org/10.1093/oxfordjournals.jbchem.a129852.
- Wooll, J. O., Friesen, R. H. E., White, M. A., Watowich, S. J., Fox, R. O., Lee, J. C., and Czerwinski, E. W. (2001) Structural and functional linkages between subunit interfaces in mammalian pyruvate kinase, J. Mol. Biol., 312, 525-540, https://doi.org/10.1006/jmbi.2001.4978.
- Ogier, H., Munnich, A., Lyonnet, S., Vaulont, S., Reach, G., and Kahn, A. (1987) Dietary and hormonal regulation of L-type pyruvate kinase gene expression in rat small intestine, Eur. J. Biochem., 166, 365-370, https://doi.org/10.1111/j.1432-1033.1987.tb13524.x.
- Tsutsumi, H., Tani, K., Fujii, H., and Miwa, S. (1988) Expression of L- and M-type pyruvate kinase in human tissues, Genomics, 2, 86-89, https://doi.org/10.1016/0888-7543(88)90112-7.
- Domingo, M., Einig, C., Eigenbrodt, E., and Reinacher, M. (1992) Immunohistological demonstration of pyruvate kinase isoenzyme type L in rat with monoclonal antibodies, J. Histochem. Cytochem., 40, 665-673, https://doi.org/10.1177/40.5.1374093.
- Miquerol, L., Cluzeaud, F., Alexandre, Y., and Vandewalle, A. (1996) Tissue specificity of L-pyruvate kinase transgenes results from the combinatorial effect of proximal promoter and distal activator regions, Gene Expr., 5, 315-330.
- Blair, J. B., Cimbala, M. A., Foster, J. L., and Morgan, R. A. (1976) Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 3’-5’-monophosphate, and insulin in the perfused rat liver, J. Biol. Chem., 251, 3756-3762, https://doi.org/10.1016/S0021-9258(17)33408-7.
- Ekman, P., Dahlqvist, U., Humble, E., and Engström, L. (1976) Comparative kinetic studies on the L-type pyruvate kinase from rat liver and the enzyme phosphorylated by cyclic 3′,5′-AMP-stimulated protein kinase, Biochim. Biophys. Acta Enzymol., 429, 374-382, https://doi.org/10.1016/0005-2744(76)90285-0.
- Feliú, J. E., Hue, L., and Hers, H. G. (1976) Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes, Proc. Natl. Acad. Sci. USA, 73, 2762-2766, https://doi.org/10.1073/pnas.73.8.2762.
- Tanaka, T., Harano, Y., Sue, F., and Morimura, H. (1967) Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues, J. Biochem. (Tokyo), 62, 71-91, https://doi.org/10.1093/oxfordjournals.jbchem.a128639.
- Imamura, K., Tanaka, T., Nishina, T., Nakashima, K., and Miwa, S. (1973) Studies on pyruvate kinase (PK) deficiency: II. Electrophoretic, kinetic, and immunological studies on pyruvate kinase of erythrocytes and other tissues, J. Biochem. (Tokyo), 74, 1165-1175, https://doi.org/10.1093/oxfordjournals.jbchem.a130344.
- Nakashima, K., Miwa, S., Oda, S., Tanaka, T., Imamura, K., and Nishina, T. (1974) Electrophoretic and kinetic studies of mutant erythrocyte pyruvate kinases, Blood, 43, 537-548, https://doi.org/10.1182/blood.V43.4.537.537.
- Zhang, Z., Deng, X., Liu, Y., Liu, Y., Sun, L., and Chen, F. (2019) PKM2, function and expression and regulation, Cell Biosci., 9, 52, https://doi.org/10.1186/s13578-019-0317-8.
- Zwerschke, W., Mazurek, S., Massimi, P., Banks, L., Eigenbrodt, E., and Jansen-Dürr, P. (1999) Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein, Proc. Natl. Acad. Sci. USA, 96, 1291-1296, https://doi.org/10.1073/pnas.96.4.1291.
- Mazurek, S., Zwerschke, W., Jansen-Dürr, P., and Eigenbrodt, E. (2001) Metabolic cooperation between different oncogenes during cell transformation: interaction between activated RAS and HPV-16 E7, Oncogene, 20, 6891-6898, https://doi.org/10.1038/sj.onc.1204792.
- Wang, P., Sun, C., Zhu, T., and Xu, Y. (2015) Structural insight into mechanisms for dynamic regulation of PKM2, Protein Cell, 6, 275-287, https://doi.org/10.1007/s13238-015-0132-x.
- Lv, L., Li, D., Zhao, D., Lin, R., Chu, Y., Zhang, H., Zha, Z., Liu, Y., Li, Z., Xu, Y., Wang, G., Huang, Y., Xiong, Y., Guan, K.-L., and Lei, Q.-Y. (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth, Mol. Cell, 42, 719-730, https://doi.org/10.1016/ j.molcel.2011.04.025.
- Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., Fleming, M. D., Schreiber, S. L., and Cantley, L. C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth, Nature, 452, 230-233, https://doi.org/10.1038/nature06734.
- Wei, Y., Lu, M., Mei, M., Wang, H., Han, Z., Chen, M., Yao, H., Song, N., Ding, X., Ding, J., Xiao, M., and Hu, G. (2020) Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection, Nat. Commun., 11, 941, https://doi.org/10.1038/s41467-020-14788-x.
- Lim, J. Y., Yoon, S. O., Seol, S. Y., Hong, S. W., Kim, J. W., Choi, S. H., and Cho, J. Y. (2012) Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer, World J. Gastroenterol., 18, 4037, https://doi.org/10.3748/wjg.v18.i30.4037.
- Feng, C., Gao, Y., Wang, C., Yu, X., Zhang, W., Guan, H., Shan, Z., and Teng, W. (2013) Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer, J. Clin. Endocrinol. Metab., 98, E1524-E1533, https://doi.org/10.1210/jc.2012-4258.
- Kuranaga, Y., Sugito, N., Shinohara, H., Tsujino, T., Taniguchi, K., Komura, K., Ito, Y., Soga, T., and Akao, Y. (2018) SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells, Int. J. Mol. Sci., 19, 3012, https://doi.org/10.3390/ijms19103012.
- Suzuki, A., Puri, S., Leland, P., Puri, A., Moudgil, T., Fox, B. A., Puri, R. K., and Joshi, B. H. (2019) Subcellular compartmentalization of PKM2 identifies anti-PKM2 therapy response in vitro and in vivo mouse model of human non-small-cell lung cancer, PLoS One, 14, e0217131, https://doi.org/10.1371/journal.pone.0217131.
- Zhou, Y., Huang, Z., Su, J., Li, J., Zhao, S., Wu, L., Zhang, J., He, Y., Zhang, G., Tao, J., Zhou, J., Chen, X., and Peng, C. (2020) Benserazide is a novel inhibitor targeting PKM2 for melanoma treatment, Int. J. Cancer, 147, 139-151, https://doi.org/10.1002/ijc.32756.
- Liang, N., Mi, L., Li, J., Li, T., Chen, J., Dionigi, G., Guan, H., and Sun, H. (2023) Pan-cancer analysis of the oncogenic and prognostic role of PKM2: a potential target for survival and immunotherapy, BioMed Res. Int., 375109, https://doi.org/10.1155/2023/3375109.
- Fatela-Cantillo, D., Fernandez-Suarez, A., Moreno, M. A. M., Gutierrez, J. J. P., and Iglesias, J. M. D. (2012) Prognostic value of plasmatic tumor M2 pyruvate kinase and carcinoembryonic antigen in the survival of colorectal cancer patients, Tumor Biol., 33, 825-832, https://doi.org/10.1007/s13277-011-0304-0.
- Xu, C., Liu, W., Li, L., Wang, Y., and Yuan, Q. (2021) Serum tumour M2-pyruvate kinase as a biomarker for diagnosis and prognosis of early-stage non-small cell lung cancer, J. Cell. Mol. Med., 25, 7335-7341, https://doi.org/10.1111/jcmm.16762.
- Hsu, M.-C., and Hung, W.-C. (2018) Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling, Mol. Cancer, 17, 1-9, https://doi.org/10.1186/s12943-018-0791-3.
- Eigenbrodt, E., Leib, S., Krămer, W., Friis, R., and Schoner, W. (1983) Structural and kinetic differences between the M2 type pyruvate kinases from lung and various tumors, Biomed. Biochim. Acta, 42, S278-S282.
- Taketa, K., Shimamura, J., Ueda, M., Shimada, Y., and Kosaka, K. (1988) Profiles of carbohydrate-metabolizing enzymes in human hepatocellular carcinomas and preneoplastic livers, Cancer Res., 48, 467-474.
- Guderley, H., Fournier, P., and Auclair, J.-C. (1989) Phylogeny congruence analysis and isozyme classification: the pyruvate kinase system, J. Theor. Biol., 140, 205-220, https://doi.org/10.1016/S0022-5193(89)80129-8.
- Newsholme, E. A., and Board, M. (1991) Application of metabolic-control logic to fuel utilization and its significance in tumor cells, Adv. Enzyme Regul., 31, 225-246, https://doi.org/10.1016/0065-2571(91)90015-e.
- Gao, X., Wang, H., Yang, J. J., Liu, X., and Liu, Z.-R. (2012) Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase, Mol. Cell, 45, 598-609, https://doi.org/10.1016/j.molcel.2012.01.001.
- Gao, X., Wang, H., Yang, J. J., Chen, J., Jie, J., Li, L., Zhang, Y., and Liu, Z.-R. (2013) Reciprocal regulation of protein kinase and pyruvate kinase activities of pyruvate kinase M2 by growth signals, J. Biol. Chem., 288, 15971-15979, https://doi.org/10.1074/jbc.M112.448753.
- Wong, N., De Melo, J., and Tang, D. (2013) PKM2, a central point of regulation in cancer metabolism, Int. J. Cell Biol., 242513, https://doi.org/10.1155/2013/242513.
- Mazurek, S., Grimm, H., Boschek, C. B., Vaupel, P., and Eigenbrodt, E. (2002) Pyruvate kinase type M2: a crossroad in the tumor metabolome, Br. J. Nutr., 87, S23, https://doi.org/10.1079/BJN2001454.
- Ferguson, E. C., and Rathmell, J. C. (2008) New roles for pyruvate kinase M2: working out the Warburg effect, Trends Biochem. Sci., 33, 359-362, https://doi.org/10.1016/j.tibs.2008.05.006.
- Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J., Shen, M., Bellinger, G., Sasaki, A. T., Locasale, J. W., Auld, D. S., Thomas, C. J., Vander Heiden, M. G., and Cantley, L. C. (2011) Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses, Science, 334, 1278-1283, https://doi.org/10.1126/science.1211485.
- Chaneton, B., Hillmann, P., Zheng, L., Martin, A. C. L., Maddocks, O. D. K., Chokkathukalam, A., Coyle, J. E., Jankevics, A., Holding, F. P., Vousden, K. H., Frezza, C., O’Reilly, M., and Gottlieb, E. (2012) Serine is a natural ligand and allosteric activator of pyruvate kinase M2, Nature, 491, 458-462, https://doi.org/10.1038/ nature11540.
- Cortés-Cros, M., Hemmerlin, C., Ferretti, S., Zhang, J., Gounarides, J. S., Yin, H., Muller, A., Haberkorn, A., Chene, P., Sellers, W. R., and Hofmann, F. (2013) M2 isoform of pyruvate kinase is dispensable for tumor maintenance and growth, Proc. Natl. Acad. Sci. USA, 110, 489-494, https://doi.org/10.1073/pnas.1212780110.
- Chinopoulos, C. (2020) From glucose to lactate and transiting intermediates through mitochondria, bypassing pyruvate kinase: considerations for cells exhibiting dimeric PKM2 or otherwise inhibited kinase activity, Front. Physiol., 11, 543564, https://doi.org/10.3389/fphys.2020.543564.
- Jacquet, P., and Stéphanou, A. (2021) Metabolic reprogramming, questioning, and implications for cancer, Biology, 10, 129, https://doi.org/10.3390/biology10020129.
- Jacquet, P., and Stéphanou, A. (2022) Searching for the metabolic signature of cancer: a review from Warburg’s time to now, Biomolecules, 12, 1412, https://doi.org/10.3390/biom12101412.
- Medina, M. Á. (2020) Metabolic reprogramming is a hallmark of metabolism itself, BioEssays, 42, 2000058, https://doi.org/10.1002/bies.202000058.
- Hugo, F., Fischer, G., and Eigenbrodt, E. (1999) Quantitative detection of tumor M2-PK in serum and plasma, Anticancer Res., 19, 2753-2757.
- Oremek, G., Gerstmeier, F., Sauer-Eppel, H., Sapoutzis, N., and Wechsel, H. (2003) Pre-analytical problems in the measurement of tumor type pyruvate kinase (tumor M2-PK), Anticancer Res., 23, 1127-1130.
- Roigas, J., Schulze, G., Raytarowski, S., Jung, K., Schnorr, D., and Loening, S. A. (2001) Tumor M2 pyruvate kinase in plasma of patients with urological tumors, Tumor Biol., 22, 282-285, https://doi.org/10.1159/ 000050628.
- Amoev, Z. V., Alyasova, A. V., Gorshkova, T. N., Samsonova, E. I., Strokina, E. V., and Kontorshchikova, K. N. (2020) Tumor M2-pyruvate kinase, matrix carbonic anhydrase IX, and metalloproteinase 9 – novel prognostic markers of renal cell carcinoma, Sovrem. Tehnol. Med., 12, 43, https://doi.org/10.17691/stm2020.12.2.05.
- Schneider, J., Bitterlich, N., and Schulze, G. (2005) Improved sensitivity in the diagnosis of gastro-intestinal tumors by fuzzy logic-based tumor marker profiles including the tumor M2-PK, Anticancer Res., 25, 1507-1516.
- Li, Y. G., and Zhang, N. (2009) Clinical significance of serum tumour M2-PK and CA19-9 detection in the diagnosis of cholangiocarcinoma, Dig. Liver Dis., 41, 605-608, https://doi.org/10.1016/j.dld.2008.11.010.
- Joergensen, M. T., Heegaard, N. H. H., and Schaffalitzky de Muckadell, O. B. (2010) Comparison of plasma Tu-M2-PK and CA19-9 in pancreatic cancer, Pancreas, 39, 243-247, https://doi.org/10.1097/MPA.0b013e3181bae8ab.
- Dhar, D. K., Olde Damink, S. W. M., Brindley, J. H., Godfrey, A., Chapman, M. H., Sandanayake, N. S., Andreola, F., Mazurek, S., Hasan, T., Malago, M., and Pereira, S. P. (2013) Pyruvate kinase M2 is a novel diagnostic marker and predicts tumor progression in human biliary tract cancer: M2-PK in biliary tract cancer, Cancer, 119, 575-585, https://doi.org/10.1002/cncr.27611.
- Bandara, I. A., Baltatzis, M., Sanyal, S., and Siriwardena, A. K. (2018) Evaluation of tumor M2-pyruvate kinase (Tumor M2-PK) as a biomarker for pancreatic cancer, World J. Surg. Oncol., 16, 56, https://doi.org/10.1186/s12957-018-1360-3.
- Wang, W. Q., Liu, W., Zhang, N., Wang, P. H., Cao, J. Z., Chen, J. M., Li, B. L., and He, X. D. (2018) The diagnostic value of pyruvate kinase isoenzyme type M2 for biliary tract carcinoma. A systematic review and meta-analysis, J. Gastrointestin. Liver Dis., 27, 73-81, https://doi.org/10.15403/jgld.2014.1121.271.
- Liu, J., Zhu, H., Jiang, H., Zhang, H., Wu, D., Hu, X., and Zhang, H. (2015) Tumor M2 pyruvate kinase in diagnosis of nonsmall cell lung cancer: a meta-analysis based on Chinese population, J. Cancer Res. Ther., 11, S104-S106, https://doi.org/10.4103/0973-1482.163857.
- Schneider, J., Peltri, G., Bitterlich, N., Philipp, M., Velcovsky, H. G., Morr, H., Katz, N., and Eigenbrodt, E. (2003) Fuzzy logic-based tumor marker profiles improved sensitivity of the detection of progression in small-cell lung cancer patients, Clin. Exp. Med., 2, 185-191, https://doi.org/10.1007/s102380300005.
- Schneider, J., Neu, K., Velcovsky, H.-G., Morr, H., Eigenbrodt, E. (2003) Tumor M2-pyruvate kinase in the follow-up of inoperable lung cancer patients: a pilot study, Cancer Lett., 193, 91-98, https://doi.org/10.1016/ S0304-3835(02)00720-6.
- Hoopmann, M., Warm, M., Mallmann, P., Thomas, A., Göhring, U.-J., and Schöndorf, T. (2022) Tumor M2 pyruvate kinase – determination in breast cancer patients receiving trastuzumab therapy, Cancer Lett., 187, 223-228, https://doi.org/10.1016/S0304-3835(02)00404-4.
- Ladd, J. J., Chao, T., Johnson, M. M., Qiu, J., Chin, A., Israel, R., Pitteri, S. J., Mao, J., Wu, M., Amon, L. M., McIntosh, M., Li, C., Prentice, R., Disis, N., and Hanash, S. (2013) Autoantibody signatures involving glycolysis and splicesome proteins precede a diagnosis of breast cancer among postmenopausal women, Cancer Res., 73, 1502-1513, https://doi.org/10.1158/0008-5472.CAN-12-2560.
- Ahmed, A. S., Dew, T., Lawton, F. G., Papadopoulos, A. J., Devaja, O., and Raju, K. S. (2007) Tumour M2-PK as a predictor of surgical outcome in ovarian cancer, a prospective cohort study, EJGO, 28, 103-108, https://doi.org/10.1136/ijgc-00009577-200610001-00264.
- Kaura, B., Bagga, R., and Patel, F. D. (2004) Evaluation of the pyruvate kinase isoenzyme tumor (Tu M2-PK) as a tumor marker for cervical carcinoma, J. Obstet. Gynaecol. Res., 30, 193-196, https://doi.org/10.1111/j.1447-0756. 2004.00187.x.
- Landt, S., Jeschke, S., Koeninger, A., Thomas, A., Heusner, T., Korlach, S., Ulm, K., Schmidt, P., Blohmer, J.-U., Lichtenegger, W., Sehouli, J., and Kuemmel, S. (2010) Tumor-specific correlation of tumor M2 pyruvate kinase in pre-invasive, invasive and recurrent cervical cancer, Anticancer Res., 30, 375-382.
- Ugurel, S., Bell, N., Sucker, A., Zimpfer, A., Rittgen, W., and Schadendorf, D. (2005) Tumor type M2 pyruvate kinase (TuM2-PK) as a novel plasma tumor marker in melanoma, Int. J. Cancer, 117, 825-830, https://doi.org/10.1002/ijc.21073.
- Hapa, A., Erkin, G., Hasçelik, G., Pektaş, D., and Arslan, U. (2011) Plasma TM2-PK levels in mycosis fungoides patients, Arch. Dermatol. Res., 303, 35-40, https://doi.org/10.1007/s00403-010-1085-9.
- Muñoz-Colmenero, A., Fernández-Suárez, A., Fatela-Cantillo, D., Ocaña-Pérez, E., Domínguez-Jiménez, J. L., and Díaz-Iglesias, J. M. (2015) Plasma tumor M2-pyruvate kinase levels in different cancer types, Anticancer Res., 35, 4271-4276.
- Liu, W., Woolbright, B. L., Pirani, K., Didde, R., Abbott, E., Kaushik, G., Martin, P., Hamilton-Reeves, J., Taylor, J. A., Holzbeierlein, J. M., Anant, S., and Lee, E. K. (2019) Tumor M2-PK: a novel urine marker of bladder cancer, PLoS One, 14, e0218737, https://doi.org/10.1371/journal.pone.0218737.
- Tonus, C. (2012) Faecal pyruvate kinase isoenzyme type M2 for colorectal cancer screening: a meta-analysis, World J. Gastroenterol., 18, 4004, https://doi.org/10.3748/wjg.v18.i30.4004.
- Uppara, M., Adaba, F., Askari, A., Clark, S., Hanna, G., Athanasiou, T., and Faiz, O. A. (2015) Systematic review and meta-analysis of the diagnostic accuracy of pyruvate kinase M2 isoenzymatic assay in diagnosing colorectal cancer, World J. Surg. Oncol., 13, 48, https://doi.org/10.1186/s12957-015-0446-4.
- Nasir Kansestani, A., Zare, M. E., Tong, Q., and Zhang, J. (2022) Comparison of faecal protein biomarkers’ diagnostic accuracy for colorectal advanced neoplasms: a systematic review and meta-analysis, Sci. Rep., 12, 2623, https://doi.org/10.1038/s41598-022-06689-4.
- Parente, F., Marino, B., Ilardo, A., Fracasso, P., Zullo, A., Hassan, C., Moretti, R., Cremaschini, M., Ardizzoia, A., Saracino, I., Perna, F., and Vaira, D. A. (2012) Combination of faecal tests for the detection of colon cancer: a new strategy for an appropriate selection of referrals to colonoscopy? A prospective multicentre Italian study, Eur. J. Gastroenterol. Hepatol., 24, 1145-1152, https://doi.org/10.1097/MEG.0b013e328355cc79.
- Zaccaro, C., Saracino, I. M., Fiorini, G., Figura, N., Holton, J., Castelli, V., Pesci, V., Gatta, L., and Vaira, D. (2017) Power of screening tests for colorectal cancer enhanced by high levels of M2-PK in addition to FOBT, Intern. Emerg. Med., 12, 333-339, https://doi.org/10.1007/s11739-017-1610-3.
- Kalantari, H., Khodadoostan, M., Yaran, M., and Tavakoli, A. (2020) Diagnostic value of pyruvate kinase isoenzyme type M2 in colon cancer proven with colonoscopy, Adv. Biomed. Res., 9, 76, https://doi.org/10.4103/ abr.abr_91_20.
- Leen, R., Seng-Lee, C., Holleran, G., O’Morain, C., and McNamara, D. (2014) Comparison of faecal M2-PK and FIT in a population-based bowel cancer screening cohort, Eur. J. Gastroenterol. Hepatol., 26, 514-518, https://doi.org/10.1097/MEG.0000000000000025.
- Charatcharoenwitthaya, P., Enders, F. B., Halling, K. C., and Lindor, K. D. (2008) Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis, Hepatology, 48, 1106-1117, https://doi.org/10.1002/hep.22441.
- Marrelli, D., Caruso, S., Pedrazzani, C., Neri, A., Fernandes, E., Marini, M., Pinto, E., and Roviello, F. (2009) CA19-9 serum levels in obstructive jaundice: clinical value in benign and malignant conditions, Am. J. Surg., 198, 333-339, https://doi.org/10.1016/j.amjsurg.2008.12.031.
- Sinakos, E., Saenger, A. K., Keach, J., Kim, W. R., and Lindor, K. D. (2011) Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19-9 do not have cholangiocarcinoma, Clin. Gastroenterol. Hepatol., 9, 434-439.e1, https://doi.org/10.1016/j.cgh.2011.02.007.
- Bonney, G. K., Craven, R. A., Prasad, R., Melcher, A. F., Selby, P. J., and Banks, R. E. (2008) Circulating markers of biliary malignancy: opportunities in proteomics? Lancet Oncol., 9, 149-158, https://doi.org/10.1016/S1470-2045(08)70027-5.
- Venkatesh, P. G. K., Navaneethan, U., Shen, B., and McCullough, A. J. (2013) Increased serum levels of carbohydrate antigen 19-9 and outcomes in primary sclerosing cholangitis patients without cholangiocarcinoma, Dig. Dis. Sci., 58, 850-857, https://doi.org/10.1007/s10620-012-2401-3
- Navaneethan, U., Lourdusamy, V., Poptic, E., Hammel, J. P., Sanaka, M. R., and Parsi, M. A. (2015) Comparative effectiveness of pyruvate kinase M2 in bile, serum carbohydrate antigen 19-9, and biliary brushings in diagnosing malignant biliary strictures, Dig. Dis. Sci., 60, 903-909, https://doi.org/10.1007/s10620-014-3397-7.
- Aguilar Olivos, N. E., Oria-Hernández, J., Briones, N. S., and Téllez Ávila, F. I. (2023) Effectiveness for diagnosis of malignancy of bile pyruvate kinase M2 in patients with indeterminate biliary stricture, Surg. Laparosc. Endosc. Percutan. Tech., 33, 147-151, https://doi.org/10.1097/SLE.0000000000001158.
- Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., and Schreiber, R. D. (2002) Cancer immunoediting: from immunosurveillance to tumor escape, Nat. Immunol., 3, 991-998, https://doi.org/10.1038/ni1102-991.
- Dunn, G. P., Old, L. J., and Schreiber, R. D. (2004) The three Es of cancer immunoediting, Annu. Rev. Immunol., 22, 329-360, https://doi.org/10.1146/annurev.immunol.22.012703.104803.
- Schreiber, R. D., Old, L. J., and Smyth, M. J. (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion, Science, 331, 1565-1570, https://doi.org/10.1126/science.1203486.
- Borroni, E. M., and Grizzi, F. (2021) Cancer Immunoediting and beyond in 2021, Int. J. Mol. Sci., 22, 13275, https://doi.org/10.3390/ijms222413275.
- Gubin, M. M., and Vesely, M. D. (2022) Cancer immunoediting in the era of immuno-oncology, Clin. Cancer Res., 28, 3917-3928, https://doi.org/10.1158/1078-0432.CCR-21-1804.
- ElTanbouly, M. A., and Noelle, R. J. (2021) Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey, Nat. Rev. Immunol., 21, 257-267, https://doi.org/10.1038/s41577-020-00454-2.
- Zaenker, P., Gray, E. S., and Ziman, M. R. (2016) Autoantibody production in cancer – the humoral immune response toward autologous antigens in cancer patients, Autoimmun. Rev., 15, 477-483, https://doi.org/10.1016/j.autrev.2016.01.017.
- Wu, J., Li, X., Song, W., Fang, Y., Yu, L., Liu, S., Churilov, L. P., and Zhang, F. (2017) The roles and applications of autoantibodies in progression, diagnosis, treatment and prognosis of human malignant tumours, Autoimmun. Rev., 16, 1270-1281, https://doi.org/10.1016/j.autrev.2017.10.012.
- De Jonge, H., Iamele, L., Maggi, M., Pessino, G., and Scotti, C. (2021) Anti-cancer auto-antibodies: roles, applications and open issues, Cancers, 13, 813, https://doi.org/10.3390/cancers13040813.
- Alix-Panabières, C., and Pantel, K. (2021) Liquid biopsy: from discovery to clinical application, Cancer Discov., 11, 858-873, https://doi.org/10.1158/2159-8290.CD-20-1311.
- Desmetz, C., Mange, A., Maudelonde, T., and Solassol, J. (2011) Autoantibody signatures: progress and perspectives for early cancer detection, J. Cell. Mol. Med., 15, 2013-2024, https://doi.org/10.1111/j.1582-4934. 2011.01355.x.
- Trivers, G. E., Cawley, H. L., DeBenedetti, V. M. G., Hollstein, M., Marion, M. J., Bennett, W. P., Hoover, M. L., Prives, C. C., Tamburro, C. C., and Harris, C. C. (1995) Anti-P53 antibodies in sera of workers occupationally exposed to vinyl chloride, J. Natl. Cancer Inst., 87, 1400-1407, https://doi.org/10.1093/jnci/87.18.1400.
- Jett, J., Healey, G., Macdonald, I., Parsy-Kowalska, C., Peek, L., and Murray, A. (2017) P2.13-013 Determination of the detection lead time for autoantibody biomarkers in early stage lung cancer using the UKCTOCS cohort, J. Thorac. Oncol., 12 (Supplement 2), S2170, https://doi.org/10.1016/j.jtho.2017.09.1360.
- Geng, G., Yu, X., Jiang, J., and Yu, X. (2020) Aetiology and pathogenesis of paraneoplastic autoimmune disorders, Autoimmun. Rev., 19, 102422, https://doi.org/10.1016/j.autrev.2019.102422.
- Murray, A., Chapman, C. J., Healey, G., Peek, L. J., Parsons, G., Baldwin, D., Barnes, A., Sewell, H. F., Fritsche, H. A., and Robertson, J. F. R. (2010) Technical validation of an autoantibody test for lung cancer, Ann. Oncol., 21, 1687-1693, https://doi.org/10.1093/annonc/mdp606.
- Boyle, P., Chapman, C. J., Holdenrieder, S., Murray, A., Robertson, C., Wood, W. C., Maddison, P., Healey, G., Fairley, G. H., Barnes, A. C., and Robertson, J. F. R. (2011) Clinical validation of an autoantibody test for lung cancer, Ann. Oncol., 22, 383-389, https://doi.org/10.1093/annonc/mdq361.
- Chapman, C. J., Healey, G. F., Murray, A., Boyle, P., Robertson, C., Peek, L. J., Allen, J., Thorpe, A. J., Hamilton-Fairley, G., Parsy-Kowalska, C. B., MacDonald, I. K., Jewell, W., Maddison, P., and Robertson, J. F. R. (2012) EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays, Tumor Biol., 33, 1319-1326, https://doi.org/10.1007/s13277-012-0379-2.
- Lam, S., Boyle, P., Healey, G. F., Maddison, P., Peek, L., Murray, A., Chapman, C. J., Allen, J., Wood, W. C., Sewell, H. F., and Robertson, J. F. R. (2011) EarlyCDT-Lung: an immunobiomarker test as an aid to early detection of lung cancer, Cancer Prev. Res. (Phila.), 4, 1126-1134, https://doi.org/10.1158/1940-6207.CAPR-10-0328.
- Doseeva, V., Colpitts, T., Gao, G., Woodcock, J., and Knezevic, V. (2015) Performance of a multiplexed dual analyte immunoassay for the early detection of non-small cell lung cancer, J. Transl. Med., 13, 55, https://doi.org/10.1186/s12967-015-0419-y.
- Clebak, K. T., Partin, M. T., and Mendez-Miller, M. (2020) PAULA’s test for lung cancer screening, Am. Pham. Phys., 102, 53-54
- Shukla, S., Govekar, R. B., Sirdeshmukh, R., Sundaram, C. S., D’Cruz, A. K., Pathak, K. A., Kane, S. V., and Zingde, S. M. (2007) Tumor antigens eliciting autoantibody response in cancer of gingivo-buccal complex, Proteomics Clin. Appl., 1, 1592-1604, https://doi.org/10.1002/prca.200700206.
- Shukla, S., Pranay, A., D’Cruz, A. K., Chaturvedi, P., Kane, S. V., and Zingde, S. M. (2009) Immunoproteomics reveals that cancer of the tongue and the gingivobuccal complex exhibit differential autoantibody response, Cancer Biomark., 5, 127-135, https://doi.org/10.3233/CBM-2009-0604.
- Cramer, D. W., O’Rourke, D. J., Vitonis, A. F., Matulonis, U. A., DiJohnson, D. A., Sluss, P. M., Crum, C. P., and Liu, B. C.-S. (2010) CA125 immune complexes in ovarian cancer patients with low CA125 concentrations, Clin. Chem., 56, 1889-1892, https://doi.org/10.1373/clinchem.2010.153122.
- Gourevitch, M., von Mensdorff-Pouilly, S., Litvinov, S., Kenemans, P., van Kamp, G., Verstraeten, A., and Hilgers, J. (1995) Polymorphic epithelial mucin (MUC-1)-containing circulating immune complexes in carcinoma patients, Br. J. Cancer, 72, 934-938, https://doi.org/10.1038/bjc.1995.436.
- Fortner, R. T., Schock, H., Le Cornet, C., Hüsing, A., Vitonis, A. F., Johnson, T. S., Fichorova, R. N., Fashemi, T., Yamamoto, H. S., Tjønneland, A., Hansen, L., Overvad, K., Boutron-Ruault, M.-C., Kvaskoff, M., Severi, G., Boeing, H., Trichopoulou, A., Papatesta, E.-M., La Vecchia, C., Palli, D., Sieri, S., Tumino, R., Sacerdote, C., Mattiello, A., Onland-Moret, N. C., Peeters, P. H., Bueno-de-Mesquita, H. B., Weiderpass, E., Quirós, J. R., Duell, E. J., Sánchez, M.-J., Navarro, C., Ardanaz, E., Larrañaga, N., Nodin, B., Jirström, K., Idahl, A., Lundin, E., Khaw, K.-T., Travis, R. C., Gunter, M., Johansson, M., Dossus, L., Merritt, M. A., Riboli, E., Terry, K. L., Cramer, D. W., and Kaaks, R. (2018) Ovarian cancer early detection by circulating CA125 in the context of anti-CA125 autoantibody levels: results from the EPIC cohort, Int. J. Cancer, 142, 1355-1360, https://doi.org/10.1002/ ijc.31164.
- Haugen, B. R., Alexander, E. K., Bible, K. C., Doherty, G. M., Mandel, S. J., Nikiforov, Y. E., Pacini, F., Randolph, G. W., Sawka, A. M., Schlumberger, M., Schuff, K. G., Sherman, S. I., Sosa, J. A., Steward, D. L., Tuttle, R. M., and Wartofsky, L. (2016) American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer, Thyroid, 26, 1-133, https://doi.org/10.1089/thy.2015.0020.
- Rosario, P. W., Côrtes, M. C. S., and Franco Mourão, G. (2021) Follow-up of patients with thyroid cancer and antithyroglobulin antibodies: a review for clinicians, Endocr. Relat. Cancer, 28, R111-R119, https://doi.org/10.1530/ERC-21-0012.
- Spencer, C. A. (2011) Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC), J. Clin. Endocrinol. Metab., 96, 3615-3627, https://doi.org/10.1210/jc.2011-1740.
- Belousov, P. V., Afanasyeva, M. A., Gubernatorova, E. O., Bogolyubova, A. V., Uvarova, A. N., Putlyaeva, L. V., Ramanauskaite, E.-M., Kopylov, A. T., Demin, D. E., Tatosyan, K. A., Ustiugova, A. S., Prokofjeva, M. M., Lanshchakov, K. V., Vanushko, V. E., Zaretsky, A. R., Severskaia, N. V., Dvinskikh, N. Y., Abrosimov, A. Y., Kuprash, D. V., and Schwartz, A. M. (2019) Multi-dimensional immunoproteomics coupled with in vitro recapitulation of oncogenic NRASQ61R identifies diagnostically relevant autoantibody biomarkers in thyroid neoplasia, Cancer Lett., 467, 96-106, https://doi.org/10.1016/j.canlet.2019.07.013.
- O’Neill, H., Malik, V., Johnston, C., Reynolds, J. V., and O’Sullivan, J. (2019) Can the efficacy of [18F]FDG-PET/CT in clinical oncology be enhanced by screening biomolecular profiles? Pharmaceuticals, 12, https://doi.org/ 10.3390/ph12010016.
- Demetriades, A. K., Almeida, A. C., Bhangoo, R. S., and Barrington, S. F. (2014) Applications of positron emission tomography in neuro-oncology: a clinical approach, Surgeon, 12, 148-157, https://doi.org/10.1016/j.surge.2013.12.001.
- Verger, A., and Langen, K.-J. (2017) PET imaging in glioblastoma: use in clinical practice, In Glioblastoma (De Vleeschouwer, S., ed.) Codon Publications, pp. 155-174, https://doi.org/10.15586/codon. glioblastoma.2017.ch9.
- Boxer, M. B., Jiang, J., Vander Heiden, M. G., Shen, M., Skoumbourdis, A. P., Southall, N., Veith, H., Leister, W., Austin, C. P., Park, H. W., Inglese, J., Cantley, L. C., Auld, D. S., and Thomas, C. J. (2010) Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase, J. Med. Chem., 53, 1048-1055, https://doi.org/10.1021/jm901577g.
- Anastasiou, D., Yu, Y., Israelsen, W. J., Jiang, J.-K., Boxer, M. B., Hong, B. S., Tempel, W., Dimov, S., Shen, M., Jha, A., Yang, H., Mattaini, K. R., Metallo, C. M., Fiske, B. P., Courtney, K. D., Malstrom, S., Khan, T. M., Kung, C., Skoumbourdis, A. P., Veith, H., Southall, N., Walsh, M. J., Brimacombe, K. R., Leister, W., Lunt, S. Y., Johnson, Z. R., Yen, K. E., Kunii, K., Davidson, S. M., Christofk, H. R., Austin, C. P., Inglese, J., Harris, M. H., Asara, J. M., Stephanopoulos, G., Salituro, F. G., Jin, S., Dang, L., Auld, D. S., Park, H.-W., Cantley, L. C., Thomas, C. J., and Vander Heiden, M. G. (2012) Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis, Nat. Chem. Biol., 8, 839-847, https://doi.org/10.1038/nchembio.1060.
- Witney, T. H., James, M. L., Shen, B., Chang, E., Pohling, C., Arksey, N., Hoehne, A., Shuhendler, A., Park, J.-H., Bodapati, D., Weber, J., Gowrishankar, G., Rao, J., Chin, F. T., and Gambhir, S. S. (2015) PET imaging of tumor glycolysis downstream of hexokinase through noninvasive measurement of pyruvate kinase M2, Sci. Transl. Med., 7, https://doi.org/10.1126/scitranslmed.aac6117.
- Beinat, C., Patel, C., Haywood, T., Murty, S., Alam, I., Xie, Y., Gandhi, H., Holley, D., and Gambhir, S. (2019) Evaluation of [18F]DASA-23 for non-invasive measurement of aberrantly expressed pyruvate kinase M2 in glioblastoma: preclinical and first in human studies, J. Nucl. Med., 60 (Suppl. 1), 52-52.
- Beinat, C., Patel, C., Haywood, T., Naya, L., Castillo, J., Shen, B., Massoud, T., Iagaru, A., Davidzon, G., Recht, L., and Gambhir, S. (2021) Initial clinical evaluation of [18F]DASA-23, a PET imaging tracer for evaluation of aberrantly expressed pyruvate kinase M2 in glioblastoma, J. Nucl. Med., 62 (Suppl. 1), 99-99.
Дополнительные файлы
