Suppression of Il5 and Il13 Gene Expression by Synthetic siRNA Molecules Reduces Nasal Hyperreactivity and Inflammation in a Mouse Model of Allergic Rhinitis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Th2 cytokines (IL-4, IL-5, and IL-13) play an important role in the development of allergies, including allergic rhinitis (AR). IL-13 promotes mucus hypersecretion in the airways and IL-5 recruits eosinophils to the nasal mucosa, leading to increased inflammation and tissue damage. Drugs based on monoclonal antibodies that block the activity of these cytokines are being developed for the treatment of allergic diseases. However, studies of drugs that target IL-13 alone (such as Tralokinumab and Lebrikizumab) were not successful. Given that IL-5 and IL-13 have different roles in AR, simultaneous inhibition of both cytokines may be a promising approach. New methods of regulating gene activity, such as RNA interference (RNAi), offer new perspectives for the development of drugs. This study describes a complex consisting of siRNAs that inhibit the activity of Il5 or Il13 genes and a currier peptide LTP. The effects of this complex on the allergic inflammation in a mouse model of AR was studied. Suppression of Il5 expression decreased nasal hyperreactivity and reduced the number of goblet cells in the respiratory epithelium of AR-induced mice. Inhibiting the Il13 gene had a more beneficial effect than suppression Il5 alone, further contributing to reducing the number of cells infiltration the nasal cavity. When both Il5 and Il13 were suppressed simultaneously, the result was similar to that of Il13 inhibition alone. Likely, IL-13 plays a more significant role in the development of AR than IL-5. As a result, the possibility of using RNAi for anti-cytokine therapy for AR has been demonstrated. However, dual inactivation of IL-5 and IL-13 by siRNAs does not provide any advantages over inactivating IL-13 alone in the current mouse model of AR. However, the lack of success of anti-IL-13 therapy in clinical practice indicates the promise of an approach based on the dual blocking of IL-5 and IL-13.

Texto integral

Acesso é fechado

Sobre autores

M. Kaganova

Institute of Immunology National Research Center

Autor responsável pela correspondência
Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

I. Shilovsky

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

V. Kovchina

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

E. Timotievich

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

T. Rusak

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Москва

A. Nikolsky

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

K. Yumashev

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

G. Pasikhov

Institute of Immunology National Research Center

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

K. Vinogradova

Institute of Immunology National Research Center; Moscow State Academy of Veterinary Medicine and Biotechnology – Skryabin MVA

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow; Moscow

D. Gursky

Institute of Immunology National Research Center; Moscow State Academy of Veterinary Medicine and Biotechnology – Skryabin MVA

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow; Moscow

M. Popova

Institute of Immunology National Research Center; Pirogov Russian National Research Medical University

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow; Moscow

V. Brylina

Moscow State Academy of Veterinary Medicine and Biotechnology – Skryabin MVA

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow

M. Khaitov

Institute of Immunology National Research Center; Pirogov Russian National Research Medical University

Email: mariya.kaganova.99@mail.ru
Rússia, Moscow; Moscow

Bibliografia

  1. Astafieva, N. G., Baranov, A. A., Vishneva, E. A., Daikhes, N. A., Zhestkov, A. V., Ilyina, N. I., Karneeva, O. V., Karpova, E. P., Kim, I. A., Kryukov, A. I., Kurbacheva, O. M., Meshkova, R. Ya., Namazova-Baranova, L. S., Nenasheva, N. M., Novik, G., Nosulya, E. V., Pavlova, K., Pampura, A., Svistushkin, V. M., Selimzyanova, L.R., Khaitov, M. R., and Khaitov, R. M. (2020) Allergic rhinitis, Russ. Rhinol., 28, 246-256, https://doi.org/10.17116/ROSRINO202028041246.
  2. Yoo, E. R. (2015) Global atlas of allergic rhinitis and chronic rhinosinusitis, European Academy of Allergy and Clinical Immunology, 1-442.
  3. Bousquet, J., Anto, J. M., Bachert, C., Baiardini, I., Bosnic-Anticevich, S., Canonica, W. G., Melén, E., Palomares, O., Scadding, G. K., Togias, A., and Toppila-Salmi, S. (2020) Allergic rhinitis, Nat. Rev. Dis. Primers, 6, 95, https://doi.org/10.1038/S41572-020-00227-0.
  4. Козулина И. Е., Курбачева О. М., Ильина Н. И. (2014) Аллергия сегодня. Анализ новых эпидемиологических данных, Росс. Аллергол. Журн., 3, 3-10.
  5. Kucuksezer, U. C., Ozdemir, C., Cevhertas, L., Ogulur, I., Akdis, M., and Akdis, C. A. (2020) Mechanisms of allergen-specific immunotherapy and allergen tolerance, Allergol. Int., 69, 549-560, https://doi.org/10.1016/j.alit. 2020.08.002.
  6. Bush, A. (2019) Pathophysiological mechanisms of asthma, Front. Pediatr., 7, 446532, https://doi.org/10.3389/FPED.2019.00068.
  7. Meng, Y., Wang, C., and Zhang, L. (2019) Recent developments and highlights in allergic rhinitis, Allergy, 74, 2320-2328, https://doi.org/10.1111/ALL.14067.
  8. Shilovskiy, I. P., Eroshkina, D. V., Babakhin, A. A., and Khaitov, M. R. (2017) Anticytokine therapy of allergic asthma, Mol. Biol., 51, 1-13.
  9. Shilovskiy, I. P., Kovchina, V. I., Timotievich, E. D., Nikolskii, A. A., and Khaitov, M. R. (2023) Role and molecular mechanisms of alternative splicing of Th2-cytokines IL-4 and IL-5 in atopic bronchial asthma, Biochemistry (Moscow), 88, 1608-1621, https://doi.org/10.1134/S0006297923100152.
  10. Komlósi, Z. I., van de Veen, W., Kovács, N., Szűcs, G., Sokolowska, M., O’Mahony, L., Mübeccel, A., and Akdis, C. A. (2022) Cellular and molecular mechanisms of allergic asthma, Mol. Asp. Med., 85, 100995, https://doi.org/ 10.1016/j.mam.2021.100995.
  11. Habib, N., Pasha, M. A., and Tang, D. D. (2022) Current understanding of asthma pathogenesis and biomarkers, Cells, 11, 2764, https://doi.org/10.3390/cells11172764.
  12. Gans, M. D., and Gavrilova, T. (2020) Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes, Paediatr. Respirat. Rev., 36, 118-127, https://doi.org/10.1016/j.prrv. 2019.08.002.
  13. Harb, H., and Chatila, T. A. (2020) Mechanisms of dupilumab, Clin. Exp. Allergy, 50, 5-14, https://doi.org/10.1111/cea.13491
  14. Keating, G. M. (2015) Mepolizumab: first global approval, Drugs, 75, 2163-2169, https://doi.org/10.1007/s40265-015-0513-8.
  15. Menzella, F., Ruggiero, P., Ghidoni, G., Fontana, M., Bagnasco, D., Livrieri, F., Scelfo, C., and Facciolongo, N. (2020) Anti-il5 therapies for severe eosinophilic asthma: literature review and practical insights, J. Asthma Allergy, 13, 301-313, https://doi.org/10.2147/JAA.S258594.
  16. Tohda, Y., Matsumoto, H., Miyata, M., Taguchi, Y., Ueyama, M., Joulain, F., and Arakawa, I. (2022) Cost-effectiveness analysis of dupilumab among patients with oral corticosteroid-dependent uncontrolled severe asthma in Japan, J. Asthma, 59, 2162-2173, https://doi.org/10.1080/02770903.2021.1996596.
  17. Wilson, R. C., and Doudna, J. A. (2013) Molecular mechanisms of RNA interference, Annu. Rev. Biophys., 42, 217-239, https://doi.org/10.1146/annurev-biophys-083012-130404.
  18. Lu, Z. J., and Mathews, D. H. (2008) OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics, Nucleic Acids Res., 36, W104-W108, https://doi.org/10.1093/nar/gkn250.
  19. Shilovskiy, I. P., Sundukova, M. S., Korneev A. V., Nikolskii, A. A., Barvinskaya, E. D., Kovchina, V. I., Vishniakova, L. I., Turenko, V. N., Yumashev, K. V., Kaganova, M. M., Brylina, V. E., Sergeev, I., Maerle, A., Kudlay, D. A., Petukhova, O., and Khaitov, M. R. (2022) The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma, Int. Immunopharmacol., 103, 108432, https://doi.org/10.1016/j.intimp.2021.
  20. Kozhikhova, K. V., Andreev, S. M., Shilovskiy, I. P., Timofeeva, A. V., Gaisina, A. R., Shatilov, A. A., Turetskiy, E.A., Andreev, I. M., Smirnov, V. V., Dvornikov, A. S., and Khaitov, M. R. (2018) A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells, Org. Biomol. Chem., 16, 8181-8190, https://doi.org/ 10.1039/c8ob02039f.
  21. Conrad, M. L., Yildirim, A. Ö., Sonar, S. S., Kiliç, A., Sudowe, S., Lunow, M., Teich, R., Renz, H., and Garn, H. (2009) Comparison of adjuvant and adjuvant-free murine experimental asthma models, Clin. Exp. Allergy, 39, 1246-1254, https://doi.org/10.1111/j.1365-2222.2009.03260.x.
  22. Shilovskiy, I. P., Barvinskaia, E. D., Kaganova, M. M., Kovchina, V. I., Yumashev, K. V., Korneev, A. V., Nikolskii, A. A., Vishnyakova, L. I., Brylina, V.E., Rusak, T. E., Kurbachova, O. M., Dyneva, M. E., Petukhova, O. A., Gudima, G.O., Kudlay, D. A., and Khaitov, M. R. (2022) A mouse model of allergic rhinitis mimicking human pathology, Immunologiya, 43, 654-672, https://doi.org/10.33029/0206-4952-2022-43-6-654-672.
  23. Köse, Ş., Tatlı Kış, T., Diniz, G., Akbulut, İ., Serin, B. G., Yılmaz, C., Özyazıcı, M., Arıcı, M., Yurdasiper, A., and Yılmaz, O. (2021) A new experimental allergic rhinitis model in mice, İzmir Dr. Behçet Uz Çocuk Hast. Dergisi, 11, 233-239, https://doi.org/10.5222/buchd.2021.86658.
  24. Gatta A. K., Hariharapura R. C., Udupa N., Reddy M. S., and Josyula V. R. (2018) Strategies for improving the specificity of siRNAs for enhanced therapeutic potential, Exp. Opin. Drug Discov., 13, 709-725, https://doi.org/ 10.1080/17460441.2018.1480607.
  25. Zhang, Y., Lan, F., and Zhang, L. (2022) Update on pathomechanisms and treatments in allergic rhinitis, Allergy, 77, 3309-3319, https://doi.org/10.1111/all.15454.
  26. Saito, H., Matsumoto, K., Denburg, A. E., Crawford, L., Ellis, R., Inman, M. D., Sehmi, R., Takatsu, K., Matthaei, K. I., and Denburg, J. A. (2002) Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency, J. Immunol., 168, 3017-3023, https://doi.org/10.4049/jimmunol.168.6.3017.
  27. Cho, J. Y., Miller, M., Baek, K. J., Han, J. W., Nayar, J., Lee, S. Y., McElwain, S., Friedman, S., and Broide, D. H. (2004) Inhibition of airway remodeling in IL-5-deficient mice, J. Clin. Invest., 113, 551-560, https://doi.org/10.1172/jci200419133.
  28. Hamelmann, E., Cieslewicz, G., Schwarze, J., Ishizuka, T., Joetham, A., Heusser, C., and Gelfand, E. W. (1999) Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness, Am. J. Respir. Crit. Care Med., 160, 934-941, https://doi.org/10.1164/ajrccm.160.3.9806029.
  29. Lundblad, L. K. A., Thompson-Figueroa, J., Allen, G. B., Rinaldi, L., Norton, R. J., Irvin, C. G., and Bates, J. H. T. (2007) Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure, Am. J. Respir. Crit. Care Med., 175, 768-774, https://doi.org/10.1164/rccm.200610-1410OC.
  30. Agrawal, A., Rengarajan, S., Adler, K. B., Ram, A., Ghosh, B., Fahim, M., and Dickey, B. F. (2007) Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma, J. Appl. Physiol., 102 399-405, https://doi.org/10.1152/japplphysiol.00630.2006.
  31. Huang, H. Y., Lee, C. C., and Chiang, B. L. (2008) Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness, Gene Ther., 15, 660-667, https://doi.org/10.1038/ gt.2008.15.
  32. Shardonofsky, F. R., Venzor, J.I., Barrios, R., Leong, K.-P., Huston, D. P., and Texas, H. (1999) Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma, J. Allergy Clin. Immunol., 104, 215-221, https://doi.org/10.1016/S0091-6749(99)70138-7.
  33. Walter, D. M., McIntire, J. J., Berry, G., McKenzie, A. N. J., Donaldson, D. D., DeKruyff, R. H., and Umetsu, D. T. (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity, J. Immunol., 167, 4668-4675, https://doi.org/10.4049/jimmunol.167.8.4668.
  34. Grünig, G., Warnock, M., Wakil, A. E., Venkaya, R., Brombacher, F., Rennick, D.M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., and Corry, D. B. (1998) Requirement for IL-13 independently of IL-4 in experimental asthma, Science, 282, 2261-2263, https://doi.org/10.1126/science.282.5397.2261.
  35. Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. (1998) Interleukin-13: central mediator of allergic asthma, Science, 282, 2258-2261, https://doi.org/10.1126/science. 282.5397.2258.
  36. Yang, G., Volk, A., Petley, T., Emmell, E., Giles-Komar, J., Shang, X., Li, J., Anuk, M. D., Shealy, D., Griswold, D. E., and Li, L. (2004) Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling, Cytokine, 28, 224-232, https://doi.org/10.1016/j.cyto.2004.08.007.
  37. Kumar, R. K., Herbert, C., Webb, D. C., Li, L., and Foster, P. S. (2004) Effects of anticytokine therapy in a mouse model of chronic asthma, Am. J. Respir. Crit. Care Med., 170, 1043-1048, https://doi.org/10.1164/rccm. 200405-681OC.
  38. Lively, T. N., Kossen, K., Balhorn, A., Koya, T., Zinnen, S., Takeda, K., Lucas, J. J., Polisky, B., Richards, I. M., and Gelfand, E. W. (2008) Effect of chemically modified IL-13 short interfering RNA on development of airway hyperresponsiveness in mice, J. Allergy Clin. Immunol., 121, 88-94, https://doi.org/10.1016/j.jaci. 2007.08.029.
  39. Lee, C. C., Huang, H. Y., and Chiang, B. L. (2011) Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness, Hum. Gene Ther., 22, 577-586, https://doi.org/10.1089/hum.2009.105.
  40. Webb, D. C., McKenzie, A. N. J., Koskinen, A. M. L., Yang, M., Mattes, J., and Foster, P. S. (2000) Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity, J. Immunol., 165, 108-113, https://doi.org/10.4049/jimmunol.165.1.108.
  41. Marone, G., Granata, F., Pucino, V., Pecoraro, A., Heffler, E., Loffredo, S., Scadding, G. W., and Varricchi, G. (2019) The intriguing role of interleukin 13 in the pathophysiology of asthma, Front. Pharmacol., 10, 1387, https://doi.org/10.3389/fphar.2019.01387.
  42. Weinstein, S. F., Katial, R., Jayawardena, S., Pirozzi, G., Staudinger, H., Eckert, L., Joish, V. N., Amin, N., Maroni, J., Rowe, P., Graham, N. M. H, and Teper, A. (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma, J. Allergy Clin. Immunol., 142, 171-177.e1, https://doi.org/10.1016/j.jaci. 2017.11.051.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Protocol of AR induction in mice. The figure shows the doses and mode of administration of the model allergen ovalbumin (OVA), as well as the doses and mode of experimental therapy with miRNA/LTP complexes. For AR induction, mice were sensitised three times subcutaneously with OVA at a dose of 20 μg/mouse, followed by provocation by intranasal administration of 25 μl of OVA at a concentration of 10 mg/ml. Simultaneously with the provocation stage, intranasal administration of miRNA/LTP complex was performed at a dose of 5 µg/mouse; p.c. - subcutaneously; i.n. - intranasally

Baixar (165KB)
3. Fig. 2. Evaluation of biological activity of miRNAs against Il5 gene in in vitro experiments. a - Suppression of Il5 gene expression by miRNA molecules. Expression was evaluated by PCR-RV method. Data are presented as absolute values (RQ) - (1) and in % relative to the target gene expression level after addition of control miRNA (siIL-13) to cells - (2); n = 5; * - statistically significant difference from siIL-13. b - Suppression of IL-5 production by different variants of miRNA molecules in in vitro experiments. IL-5 concentration in the supernatants was estimated by ELISA; for the analysis the supernatants were diluted in the ratio 1/100. Data are presented as absolute values (pg/ml) - (1) and in % relative to IL-5 concentration in the control sample (supernatants of cells treated with siIL-13) - (2); n = 5; * - statistically significant difference from siIL-13. c - Suppression of IL-5 production by different concentrations of siIL5-261/LTP complex; n = 5. Suppression of production was evaluated by ELISA; values at the point with the concentration of 0 μg/ml were taken as 100%; * - statistically significant difference from cells not treated with the complex. d - Suppression of IL-5 production by siIL5-261/LTP complex in EL-4 cells; n = 7. IL-5 concentration in supernatants was measured by ELISA; * - statistically significant difference from cells treated with the complex of LTP peptide and non-specific siGFP molecules (siGFP/LTP); # - statistically significant difference from LTP-treated cells. Median ± interquartile range are presented. Statistical analysis was performed using the non-parametric Kraskell-Wallis test; differences were considered significant at p ≤ 0.05

Baixar (364KB)
4. Fig. 3. Effect of intranasal administration of miRNA/peptide complex on gene expression of proinflammatory cytokines in the nasal cavity mucosa and cytokine production by submandibular lymph node cells. a - Changes in gene expression in the nasal cavity mucosa after intranasal administration of miRNA/peptide complexes. Expression was assessed by quantitative PCR in nasal wash samples; n = 6. b - Production of IL-5, IL-13, IL-4 and IFNγ by activated submandibular lymph node cells. Cytokine production was determined by ELISA in supernatants of submandibular lymph node cells activated with 100 μg/ml ovalbumin allergen; n = 8. Median ± interquartile range is presented. Statistical analysis was performed using the nonparametric Kraskell-Wallis test; differences were considered significant at p ≤ 0.05; * - different from siGFP; # - different from AP

Baixar (415KB)
5. Fig. 4. Changes in serum allergen-specific immunoglobulin levels and nasal hyperreactivity. After experimental treatment with miRNA/peptide complexes, blood was collected from mice and serum was obtained. Serum immunoglobulin levels were determined by ELISA (a). Nasal hyperresponsiveness was also assessed by counting the frequency of sneezing and nasal scratching within 5 min after intranasal administration of allergen (b); n = 12. Median ± interquartile range is presented. Statistical analyses were performed using the nonparametric Kraskell-Wallis test; differences were considered significant at p ≤ 0.05; * - different from siGFP; # - different from AR

Baixar (283KB)
6. Fig. 5. Histological study of the nasal cavity mucosa. a - Microphotographs of nasal cavity mucosa sections of experimental animals after staining with hematoxylin and eosin at ×400 magnification. Arrows indicate cells infiltrating the tissue. b - Total number of cells in the infiltrates and infiltrate area calculated from histological slice photographs using ZEN 3.3 software; data are presented in μm2; n = 6. Median ± interquartile range is presented. Statistical analysis was performed using the nonparametric Kraskell-Wallis test; differences were considered significant at p ≤ 0.05; * - different from siGFP; # - different from AR

Baixar (1MB)
7. Fig. 6. Proportion of bocaloid cells in respiratory epithelium. a - Microphotographs of mucous membrane slices of the nasal cavity of animals after staining with alcian blue at magnification ×400. Arrows indicate bocaloid cells containing vacuole with secretion. b - Thickness of respiratory epithelium measured from histological slice photographs using ZEN 3.3 software; data are presented in μm. c - Proportion of bocaloid cells in the respiratory epithelium of the nasal cavity; n = 6. Median ± interquartile range are presented. Statistical analysis was performed using the non-parametric Kraskell-Wallis test; differences were considered significant at p ≤ 0.05; * - different from siGFP; # - different from AR

Baixar (894KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025