Domain-wall excitations in helical phase of spin chain with competing exchange interactions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The classical Heisenberg spin chain with competing exchange interactions of ferro-(F) and antiferromagnetic (AF) types has been considered. This model describes qualitatively properties of the edge-sharing cuprates. The model id characterized by the frustration parameter which is a ratio of the AF- and F-interactions. The ground state of the model is either ferromagnetic or singlet with helical spin correlations in dependence of the frustration parameter. The main attention is given to the study of excited states in the helical phase. These states are domain walls separating the regions with opposite chiralities. It is shown that these excitations are gapped and their energy scales the temperature region in which the phase transition from the helical to the ferromagnetic phase takes place. The calculated energies of domain-walls excitations are used for the determination of the Lifshitz boundary on the phase diagram.

全文:

受限制的访问

作者简介

V. Krivnov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: krivnov@deom.chph.ras.ru
俄罗斯联邦, Moscow

D. Dmitriev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: krivnov@deom.chph.ras.ru
俄罗斯联邦, Moscow

参考

  1. H.T. Diep. Frustrated Spin Systems (Singapore: World Scientific), 2013.
  2. A.V. Chubukov. Phys. Rev. B, 44, 4693(R) (1991).
  3. F. Heidrich-Meisner, A. Honecker, T. Vekua, Phys. Rev. B, 74, 020403 (2006).
  4. V.Ya. Krivnov, A.A. Ovchinnikov. Phys. Rev. B, 53, 6435 (1996).
  5. D.V. Dmitriev, V.Ya. Krivnov. Russ. J. Phys. Chem. B, 3, 280 (2009).
  6. T. Hikihara, L. Kecke, T. Momoi, A. Furusaki. Phys. Rev. B, 78, 144404 (2008).
  7. D.V. Dmitriev, V.Ya. Krivnov. Russ. J. Phys. Chem. B, 15, 89 (2021).
  8. J. Sudan, A. Lusher, A.M. Lauchli. Phys. Rev. B, 80, 140402 (2009).
  9. D.V. Dmitriev, V.Ya. Krivnov, Phys. Rev. B, 82, 054407 (2010).
  10. C.E. Agripidis, S.-L. Drechsler, J. van den Brink, S. Nishimoto. Phys. Rev. B, 80, 220404 (2017).
  11. M. Sato, T. Momoi, A. Furusaki. Phys. Rev. B., 76, 060406 (2009).
  12. A.A. Lundin, V.E. Zobov. Russ. J. Phys. Chem. B, 15, 839 (2021).
  13. M. Takahashi, H. Nakamura, S. Sachdev. Phys. Rev. B, 54, 7446 (R) (1996).
  14. D.V. Dmitriev, V.Ya. Krivnov. Eur. Phys. J. B, 82, 123 (2011).
  15. V.N. Likhachev, G.A. Vinogradov. Russ. J. Phys. Chem. B, 14, 222 (2020).
  16. V.N. Likhachev, G.A. Vinogradov, N.S. Erikhman. Russ. J. Phys. Chem. B, 14, 391 (2020).
  17. J.W. Cahn, J.E. Hilliard. J. Chem. Phys., 28, 258 (1958).
  18. S.V. Lushchekina, A.V. Nemukhin, I.V. Polyakov et al. Russ. J. Phys. Chem. B, 16, 103 (2022).
  19. I.V. Lebed. Russ. J. Phys. Chem. B, 16, 197 (2022).
  20. I.V. Lebed. Russ. J. Phys. Chem. B, 16, 370 (2022).
  21. V.M. Volokhov, L.V. Poluyanov. Russ. J. Phys. Chem. B, 16, 827 (2022).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic configuration of spins for a domain wall (kink) type solution between two helical phases with different chirality.

下载 (80KB)
3. Fig. 2. Static structure factor S(q) for several values ​​of normalized temperature t = T/γ3/2: 1 – t = 0, 2 — t = 1, 3 – t = 0.2, 4 — t = 0.09. The position of the maximum of the structure factor qmax determines the presence/absence of helical short-range order.

下载 (65KB)
4. Fig. 3. Phase diagram of model (1). The Lifshitz boundary separates regions with ferromagnetic and helical short-range order.

下载 (65KB)
5. Fig. 4. Solution of the Euler equation (11) for two values ​​of the parameter b. It is shown how the oscillating solution of the low-amplitude spin wave type (dashed line) is transformed into a periodic kink–antikink system (solid line).

下载 (63KB)

版权所有 © Russian Academy of Sciences, 2025