Влияние природных факторов на температуру нижней термосферы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Подробно описана разработанная нами и усовершенствованная на основе многолетних измерений параметров ионосферы и нейтральной атмосферы методика определения температуры нижней термосферы. Сформулированы требования к проведению измерений методом, основанным на резонансном рассеянии пробных радиоволн искусственными периодическими неоднородностями ионосферной плазмы. Обоснованы основные требования к регистрации сигналов, рассеянных неоднородностями, и обработке данных. Показано, что нижний предел определения температуры по высоте ограничен уровнем турбопаузы, верхний – условием выполнения теплового равновесия. Приведены примеры высотно-временны́х вариаций температуры на высотах 90–130 км. Представлены новые данные, полученные в результате экспериментов на стенде СУРА (56.15° N; 46.11° E) в сентябре 2021 г. Высотное и временнóе разрешение порядка 1 км и 15 с, соответственно, позволяют изучать как быстрые, так и медленные процессы в нижней термосфере. Продемонстрирована большая изменчивость температуры на высотах 90–130 км в течение суток и ото дня ко дню, обусловленная распространением атмосферных волн с периодами от 5–10 мин до нескольких часов. Обсуждаются особенности сглаживания высотного профиля по высоте и во времени, влияние на результат определения температуры использования реального и модельного профилей электронной концентрации, а также влияние спорадического слоя Е, атмосферной турбулентности и других природных факторов. Выполнено сопоставление профилей температуры с моделью MSIS-E-90 и данными спутниковых измерений.

Об авторах

Н. В. Бахметьева

Научно-исследовательский радиофизический институт Нижегородского государственного университета им. Н.И. Лобачевского

Email: nv_bakhm@nirfi.unn.ru
Россия, Нижний Новгород

И. Н. Жемяков

Нижегородский государственный университет им. Н.И. Лобачевского

Email: ilia.zhem@yandex.ru
Россия, Нижний Новгород

Г. И. Григорьев

Научно-исследовательский радиофизический институт Нижегородского государственного университета им. Н.И. Лобачевского

Email: ilia.zhem@yandex.ru
Россия, Нижний Новгород

Е. Е. Калинина

Научно-исследовательский радиофизический институт Нижегородского государственного университета им. Н.И. Лобачевского

Автор, ответственный за переписку.
Email: ilia.zhem@yandex.ru
Россия, Нижний Новгород

Список литературы

  1. Lubken F.-J., von Zahn U., Manson A. et al. // J. Atmos. Terr. Phys. 1990. V. 52. № 10-11. P. 955.
  2. Mertens C.J., Schmidlin F.J., Goldberg R.A. et al. // Geophys. Res. Lett. 2004. V. 31. № 2. P. L03105.
  3. Schmidlin F.J. // J. Geophys. Res. 1991. V. 96. № D12. P. 22673.
  4. Кащеев Б.Л., Лысенко И.А. // Ионосферные исслед. 1989. № 47. С. 44.
  5. Offermann D., Goussev O., Kalicinsky C. et al. // J. Atmos. Sol.-Terr. Phys. 2015. V. 135. № 12. P. 1.
  6. Beig G. // J. Geophys. Res. Atmos. 2011. V. 116. P. A00H12.
  7. Perminov V.I., Semenov A.I., Medvedeva I.V., Zheleznov Y.A. // Adv. Space Res. 2014. V. 54. № 12. P. 2511.
  8. She C.Y., Songsheng Chen, Zhilin Hu et al. // Geophys. Res. Lett. 2000. V. 27. № 20. P. 3289.
  9. Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы – индикатор ее структуры и динамики РАН. М.: ГЕОС, 2006.
  10. Neuber R., von der Gathen P., von Zahn U. // J. Geophys. Res. 1988. V. 93. № 9. P. 11093.
  11. Kirkwood S// J. Geophys. Res. 1996. V. 101. № A3. P. 5133.
  12. Nozawa S., Kawahara T.D., Saito N. et al. // JGR: Space Phys. 2014. V. 119. № 1. P. 441.
  13. Kofman W., Lathuillere C., Pibaret B. // J. Atmos. Terr. Phys. 1986. V. 48. № 9–10. P. 837.
  14. https://saber.gats-inc.com/browse_data.php
  15. https://disc.gsfc.nasa.gov/datasets/ML2T_004/summary
  16. Беликович В.В., Бенедиктов Е.А., Толмачёва А.В., Бахметьева Н.В. Исследование ионосферы с помощью искусственных периодических неоднородностей. Н. Новгород: Изд-во ИПФ РАН, 1999.
  17. Толмачева А.В., Григорьев Г.И. // Хим. физика. 2021. Т. 40. № 5. С. 91.
  18. Бахметьева Н.В., Жемяков И.Н. // Хим. физика. 2022. Т. 41. № 10. С. 65.
  19. Бахметьева Н.В., Григорьев Г.И., Калинина Е.Е. // Хим. физика. 2022. Т. 42. № 4. С. 73.
  20. Tolmacheva A.V., Bakhmetieva N.V., Grigoriev G.I., Egerev M.N. // Adv. Space Res. 2019. V. 64. № 10. P. 1968.
  21. Бахметьева Н.В., Григорьев Г.И., Виноградов Г.Р. и др. // Геомагнетизм и аэрономия. 2021. Т. 61. № 6. С. 777.
  22. Бахметьева Н.В., Бубукина В.Н., Вяхирев В.Д., Калинина Е.Е., Комраков Г.П. // Изв. вузов. Радиофизика. 2016. Т. 59. № 10. С. 873.
  23. Бахметьева Н.В., Вяхирев В.Д., Григорьев Г.И. и др. // Геомагнетизм и аэрономия. 2020. Т. 60. № 1. С. 99.
  24. Bakhmetieva N.V., Grigoriev G.I., Tolmacheva A.V., Zhemyakov I.N. // Atmosphere. 2019. V. 10. № 8. P. 450.
  25. Bakhmetieva N.V., Grigoriev G.I. // Atmosphere. 2022. V. 13. № 9. P. 1346.
  26. Banks P.M., Kockarts G. Aeronomy; Part A. University of California: Academic Press, 1973.
  27. Гуревич А.В. // УФН. 2007. Т. 177. № 11. С. 1145.
  28. Беликович В.В., Бахметьева Н.В., Калинина Е.Е., Толмачева А.В. // Изв. вузов. Радиофизика. 2006. Т. 49. № 9. С. 744.
  29. Толмачева А.В., Бахметьева Н.В., Вяхирев В.Д., Бубукина В.Н., Калинина Е.Е. // Изв. вузов. Радиофизика. 2011. Т. 54. № 6. С. 403.
  30. https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_ vitmo.php
  31. Huuskonen A., Nygren T., Jalonen L.L. et al. // Geophys. Res. 1988. V. 93. № A12. P. 14603.
  32. Kopp E. // J. Geophys. Res. Space Phys. 1997. V. 102. № A5. P. 9967.
  33. Бахметьева Н.В., Беликович В.В., Егерев М.Н., Толмачева А.В. // Изв. вузов. Радиофизика. 2010. Т. 53. № 2. С. 77.
  34. Tolmacheva A.V., Bakhmetieva N.V., Grigoriev G.I., Egerev M.N. // Adv. Space Res. 2019.V. 64. № 10. P. 1968.
  35. Бенедиктов Е.А., Беликович В.В., Гребнев Ю.Н., Толмачева А.В. // Геомагнетизм и аэрономия. 1993. Т. 33. № 5. С. 170.
  36. Беликович В.В., Бенедиктов Е.А., Толмачева А.В. // Изв. РАН. Физика атмосферы и океана. 2002. Т. 38. № 1. С. 102.
  37. Толмачева А.В., Беликович В.В., Калинина Е.Е. // Геомагнетизм и аэрономия. 2009. Т. 49. № 2. С. 254–261.
  38. Бахметьева Н.В., Григорьев Г.И., Толмачева А.В. // Изв. вузов. Радиофизика. 2010. Т. 53. № 11. P. 695.
  39. https://ccmc.gsfc.nasa.gov/modelweb/models/msis_vitmo.php
  40. Голубков Г.В., Адамсон С.О., Борчевкина О.П. и др. // Хим. физика. 2022. Т. 41. № 5. С. 531.
  41. Tsuda T., Kato S., Yokol T. et al. // Radio Sci. 1990. V. 25. № 5. P. 1005.
  42. Толмачева А.В., Бахметьева Н.В., Григорьев Г.И. // Хим. физика. 2013. Т. 32. № 9. С. 89.
  43. Гершман Б.Н. Динамика ионосферной плазмы. М.: Наука, 1974.
  44. Tolmacheva A.V., Bakhmetieva N.V., Grigoriev G.I., Kalinina E.E. // Adv. Space Res. 2015. V. 56. № 6. P. 1185.
  45. Бахметьева Н.В., Бубукина В.Н., Вяхирев В.Д. и др. // Хим. физика. 2017. Т. 36. № 12. С. 44.
  46. Бахметьева Н.В., Беликович В.В., Григорьев Г.И., Толмачева А.В. // Изв. вузов. Радиофизика. 2002. Т. 45. № 3. С. 233.
  47. Tolmacheva A.V, Belikovich V.V. // Intern. J. Geomagn. Aeron. 2004. V. 5. GI1008; https://doi.org/10.1029/2004GI000061
  48. Сомсиков В.М. Солнечный терминатор и динамика атмосферы. Алма-Ата: Наука, 1983.
  49. Szewczyk A., Strelnikov B., Rapp M. et al. // Ann. Geophys. 2013. V. 31. № 5. P. 775.
  50. Liu X., Maura J., Hagan E., Roble R.G. // J. Geophys. Res. 2000. V. 105. № D10. P. 12381.
  51. Delgado R., Friedman J.S., Fentzke J.T. et al. // J. Atmos. Solar Terr. Phys. 2012. V. 74. № 11. P. 11.

Дополнительные файлы


© Н.В. Бахметьева, И.Н. Жемяков, Г.И. Григорьев, Е.Е. Калинина, 2023