Formation of sorption acrylamide foam composites under microwave heating conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the formation of foamed acrylamide sorption composites (SC) from suspensions of various natures under microwave heating conditions are presented. The increase in sorption properties (SP) was carried out due to the additional introduction of inorganic (manganese oxide) and organic (chitosan) sorbents into the acrylamide foam matrix. The production of acrylamide foam composites based on dispersion media with chemical reagents that react with toxic compounds and form sediments in the polymer matrix increases the sorption capacity (SC).

Texto integral

Acesso é fechado

Sobre autores

V. Gorshenev

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Email: lina.invers@gmail.com
Rússia, Moscow

M. Yakovleva

Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: lina.invers@gmail.com
Rússia, Moscow

Bibliografia

  1. D. Cormac, Combating marine pollution with oil and chemicals. M.: Transport, P. 365. (1989).
  2. M.T. Dmitriev, N.I. Kaznina, I.A. Pinigina. II Sanitary-chemical analysis of pollutants in the environment. Directory. M.: Chemistry, P. 367. (1989).
  3. V.N. Gorshenev, A.A. Ovchinnikov, Yu.N. Novikov. Journal. Phys. Chemistry. 75 (6), 1058 (2001).
  4. I.V. Kumpanenko, M.V. Dyubanov, N.A. Ivanova, V.V. Novikov, V.I. Krivenko, A.V. Roshchin. Russian Journal of Physical Chemistry B. 15 (6), 1054 (2021). https://doi.org/10.1134/S199079312106021X
  5. T.E. Nikiforov, N.A. Bagrovskaya, V.A. Kozlov, S.A. Lilin. Chemistry of plant raw materials. 1, 5 (2009).
  6. S.F. Abdullaev, N.M. Safaraliev, K. Partoev // Chemical Safety. 3 (1), 110 (2019). https://doi.org/10.25514/CHS.2019.1.15009
  7. D.V. Adamovich, A.E. Arustamov, V.M. Gelis, O.A. Kononenko, V.V. Milyutin // Pat. Rus. No. 2263536. 2005.
  8. S. Rogovina, S. Lomakin, S. Usachev, A. Yakhina, L. Zhorina, A. Berlin. Appl. Sci. 13, 3920 (2023). https://doi.org/10.3390/app13063920.
  9. M.V. Bazunova, R.A. Mustakimov, E.I. Kulish. Russian Journal of Physical Chemistry B. 15 (5), 888 (2021). https://doi.org/10.1134/S199079312105002X
  10. V.V. Lopatin, A.A. Askadsky, A.S. Peregudov, V.A. Berestnev, A.B. Shekhter. High-molecular compounds. Series A. 46 (12), 2079 (2004).
  11. Yu.V. Karyakin, I.I. Angelov. Pure chemical reagents. M.: Goskhimizdat. P. 584. (1955).
  12. N.U. Pulatova, O.S. Maksimova. Universum: Chemistry and biology: electron. Scientific Journal. 6 (48), 1 (2018). https://doi.org/10.32743/UniChem.2021.84.6.11853
  13. R.C. da Silva, S.B. de Aguiar, P.L.R. da Cunha, R.C.M. de Paula, J.P.A. Feitosa. Reactive and Functional Polymers. 148, 104491 (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104491
  14. V. Singh, A. Tiwari, D.N. Tripathi, R. Sanghi. Polymer. 47, 254 (2006).
  15. V.F. Gromov, M.I. Ikim, G.N. Gerasimov, E.Yu. Spiridonova, L.I. Trakhtenberg. Russian Journal of Physical Chemistry B. 16 (1), 138 (2022). https://doi.org/10.1134/S1990793122010055
  16. W. Kexin, M. Hui, P. Shengean, Y. Chun, W. Miaoting, Y. Jing, W. Xiaoke, C. Wei, Z. Anatoly. Journal of Hazardous Materials. 362, 160 (2019).
  17. A.L. Kovarsky, O.N. Sorokina, V.N. Gorshenev, A.P. Tikhonov. Journal of Physical Chemistry. 81 (2), 364 (2007).
  18. V.E. Kirillov, G.Y. Yurkov, M.S. Korobov, A.S. Voronov, V.I. Solodilov, V.M. Bouznik. Russian Journal of Physical Chemistry B. 17 (6), 1346 (2023). https://doi.org/10.1134/S1990793123060040

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Absorption spectra of a PAAG gel sample: 1 – initial solution of cobalt salt (0.01 M), 2 – cobalt solution after the release of cobalt nitrate from the gel into water.

Baixar (25KB)
3. Fig. 2. To prevent the release of cobalt ions from the foam gel, the gel foaming was carried out on a solution of alkali KOH (a) or sodium hydrogen phosphate Na2HPO4 (b) as a dispersion medium. As a result of the cobalt hydroxide precipitation reaction, the release of cobalt ions from the gel matrix was reduced; 1 - initial solution of cobalt salt (0.479 M), 2 - cobalt solution after the release of cobalt nitrate from the gel into water.

Baixar (36KB)
4. Fig. 3. Raman spectra: a – PAAG gel, b – after the reaction of manganese oxide formation in polyacrylamide gel.

Baixar (44KB)
5. Fig. 4. Experiment with precipitation of manganese dioxide by the reaction of interaction of 3% hydrogen peroxide solution with KMnO4 solution: a – type of reaction in cobalt nitrate solution before precipitation of manganese oxide, b – type of reaction with precipitation of solid phase particles. Demonstration of ferromagnetic properties of precipitated manganese oxide after sorption of cobalt salt and addition of NaBH4: c – sample on paper, d – sample on the side surface of a magnet (TU 48-4/531-6-92).

Baixar (145KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025