Reaction of atomic fluorine with benzene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Benzene is one of the most common classes of chemicals in industry. As a rule, it enters the atmosphere as a result of man-made accidents, during the evaporation of solvents, etc. Benzene and its derivatives are toxic and have a negative impact on the environment and the human body. Therefore, issues of benzene transformation in the atmosphere are of increased interest. In present work, the structures and electronic energies of equilibrium configurations and transition complexes of the C₆H₆ F and C₆H₆F⁺ systems are calculated using the density functional theory. It has been shown that the interaction of benzene with atomic fluorine can proceed through two channels, i.e. the elimination of hydrogen with the formation of a phenyl radical and the addition of a fluorine atom with the formation of an ipso-fluorocyclohexadienyl radical. It has been established that for the dissociation of ipso-fluorocyclohexadienyl radical into fluorobenzene and atomic hydrogen, it is necessary to expend about 27 kcal/mol. This indicates a low probability of this process occurring at low temperatures. Under experimental conditions, when the temperature of fluorine atoms is about 1000 K, the ipso-fluorocyclohexadienyl radical decomposes to form fluorobenzene. In this case, the occurrence of secondary reactions is unlikely. The conclusions drawn from the analysis of the results of quantum chemical calculations are in good agreement with the experimental data.

Texto integral

Acesso é fechado

Sobre autores

S. Adamson

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sergey.o.adamson@gmail.com
Rússia, Moscow

D. Kharlampidi

Moscow State Pedagogical University; RUDN University

Email: sergey.o.adamson@gmail.com
Rússia, Moscow; Moscow

A. Shtyrkova

Moscow State Pedagogical University

Email: sergey.o.adamson@gmail.com
Rússia, Moscow

S. Umanskii

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
Rússia, Moscow

Y. Dyakov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Research Center for Environmental Changes, Academia Sinica

Email: sergey.o.adamson@gmail.com
Rússia, Moscow; Taipei, Republic of China

I. Morozov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
Rússia, Moscow

I. Stepanov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
Rússia, Moscow

M. Golubkov

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: sergey.o.adamson@gmail.com
Rússia, Moscow

Bibliografia

  1. Cochran E.L., Adrian F.J., Bowers V.A. // J. Phys. Chem. 1970. V. 74. № 10. P. 2083; https://doi.org/10.1021/j100909a006
  2. Ebrecht J., Hack W., Wagner H.G. // Ber. Bunseng. Phys. Chem. 1989. V. 93. № 5. P. 619; https://doi.org/10.1002/bbpc.19890930520
  3. Vasek A.H., Sams L.C. // J. Fluor. Chem. 1974. V. 3. № 3–4. P. 397; https://doi.org/10.1016/S0022-1139(00)82640-8
  4. Parson J.M., Lee Y.T. // J. Chem. Phys. 1972. V. 56. № 9. P. 4658; https://doi.org/10.1063/1.1677917
  5. Parson J.M., Shobatake K., Lee Y.T. et al. // J. Chem. Phys. 1973. V. 59. № 3. P. 1402; https://doi.org/10.1063/1.1680198
  6. Parson J.M., Shobatake K., Lee Y.T. et al. // Faraday Discuss. Chem. Soc. 1973. V. 55. P. 344; https://doi.org/10.1039/dc9735500344
  7. Shobatake K., Parson J.M., Lee Y.T. et al. // J. Chem. Phys. 1973. V. 59. № 3. P. 1427; https://doi.org/10.1063/1.1680200
  8. Shobatake K., Lee Y.T., Rice S.A. // J. Chem. Phys. 1973. V. 59. № 3. P. 1435; https://doi.org/10.1063/1.1680201
  9. Grover J.R., Wen Y., Lee Y.T. et al. // J. Chem. Phys. 1988. V. 89. № 2. P. 938; https://doi.org/10.1063/1.455162
  10. Jacox M.E. // J. Phys. Chem. 1982. V. 86. № 5. P. 670; https://doi.org/10.1021/j100394a016
  11. Cramer J.A., Rowland F.S. // J. Amer. Chem. Soc. 1974. V. 96. № 21. P. 6579; https://doi.org/10.1021/ja00828a006
  12. Moehlmann J.G., Gleaves J.T., Hudgens J.W. et al. // J. Chem. Phys. 1974. V. 60. № 12. P. 4790; https://doi.org/10.1063/1.1680982
  13. Moehlmann J.G., McDonald J.D. // J. Chem. Phys. 1975. V. 62. № 8. P. 3061; https://doi.org/10.1063/1.430904
  14. Obara M., Fujioka T. // Jpn. J. Appl. Phys. 1975. V. 14. № 8. P. 1183; https://doi.org/10.1143/JJAP.14.1183
  15. Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. B 2020. V. 94. P. 2004; https://doi.org/10.1134/S0036024420100295
  16. Vasiliev E.S., Volkov N.D., Karpov G.V. et al. // Russ. J. Phys. Chem. B 2021. V. 15. P. 789; https://doi.org/10.1134/S1990793121050213
  17. Smith D.J., Setser D.W., Kim K.C. et al. // J. Phys. Chem. 1977. V. 81. № 9. P. 898; https://doi.org/10.1021/j100524a019
  18. Mason R.S., Parry A.J., Milton D.M.P. // J. Chem. Soc. Faraday Trans. 1994. V. 90. № 10. P. 1373; https://doi.org/10.1039/ft9949001373
  19. Tsao M.L., Hadad C.M., Platz M.S. // J. Amer. Chem. Soc. 2003. V. 125. № 27. P. 8390; https://doi.org/10.1021/ja035095u
  20. Zhao Y., Truhlar D.G. // Acc. Chem. Res. 2008. V. 41. № 2. P. 157; https://doi.org/10.1021/ar700111a
  21. Zhao Y., Truhlar D.G. // J. Chem. Theor. Comp. 2008. V. 4. № 11. P. 1849; https://doi.org/10.1021/ct800246v
  22. Adamson S.O. // Russ. J. Phys. Chem. B 2016. V. 10. P. 143; https://doi.org/10.1134/S1990793116010012
  23. Hehre W.J., Ditchfield R., Pople J.A. // J. Chem. Phys. 1972. V. 56. № 5. P. 2257; https://doi.org/10.1063/1.1677527
  24. Hariharan P.C., Pople J.A. // Theor. Chim. Acta. 1973. V. 28. № 3. P. 213; https://doi.org/10.1007/BF00533485
  25. Clark T., Chandrasekhar J., Spitznagel G.W. et al. // J. Comput. Chem. 1983. V. 4. № 3. P. 294; https://doi.org/10.1002/jcc.540040303
  26. Dunning T.H. // J. Chem. Phys. 1989. V. 90. № 2. P. 1007; https://doi.org/10.1063/1.456153
  27. Kendall R.A., Dunning T.H., Harrison R.J. // J. Chem. Phys. 1992. V. 96. № 9. P. 6796; https://doi.org/10.1063/1.462569
  28. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comp. Chem. 1993. V. 14. № 11. P. 1347; https://doi.org/10.1002/jcc.540141112
  29. Gordon M.S., Schmidt M.W. // Theory and Applications of Computational Chemistry. Amsterdam: Elsevier, 2005. P. 1167; https://doi.org/10.1016/B978-044451719-7/50084-6
  30. Huber K.P., Herzberg G. // In: Molecular Spectra and Molecular Structure. Boston: Springer, 1979. P. 8; https://doi.org/10.1007/978-1-4757-0961-2_2
  31. Feller D., Peterson K.A. // J. Mol. Struct. THEOCHEM. 1997. V. 400. № 1–3. P. 69; https://doi.org/10.1016/S0166-1280(97)90269-4
  32. Gondal M.A., Rohrbeck W., Urban W. et al. // J. Mol. Spectrosc. 1983. V. 100. № 2. P. 290; https://doi.org/10.1016/0022-2852(83)90087-5
  33. Darwent B. Bond dissociation energies in simple molecules. Gaithersburg: National Bureau of Standards, 1970; https://doi.org/10.6028/NBS.NSRDS.31
  34. Porter T.L., Mann D.E., Acquista N. // J. Mol. Spectrosc. 1965. V. 16. № 2. P. 228; https://doi.org/10.1016/0022-2852(65)90121-9
  35. Hildenbrand D.L. // Chem. Phys. Lett. 1975. V. 32. № 3. P. 523; https://doi.org/10.1016/0009-2614(75)85231-6
  36. Colbourn E.A., Dagenais M., Douglas A.E. et al. // Can. J. Phys. 1976. V. 54. № 13. P. 1343; https://doi.org/10.1139/p76-159
  37. Burgess D.R., Manion J.A. // J. Phys. Chem. Ref. Data. 2021. V. 50. № 2. 023102; https://doi.org/10.1063/5.0028874
  38. Espinosa-García J., Bravo J.L., Rangel C. // J. Phys. Chem. A. 2007. V. 111. № 14. P. 2761; https://doi.org/10.1021/jp0688759
  39. Foon R., Reid G.P. // Trans. Faraday Soc. 1971. V. 67. P. 3513; https://doi.org/10.1039/tf9716703513
  40. Persky A. // Chem. Phys. Lett. 1998. V. 298. № 4–6. P. 390; https://doi.org/10.1016/S0009-2614(98)01154-3
  41. Atkinson R., Baulch D.L., Cox R.A. et al. // J. Phys. Chem. Ref. Data. 1997. V. 26. № 3. P. 521; https://doi.org/10.1063/1.556011
  42. Hrusak J., Schroeder D., Weiske T. et al. // J. Amer. Chem. Soc. 1993. V. 115. № 5. P. 2015; https://doi.org/10.1021/ja00058a057
  43. Solcà N., Dopfer O. // J. Amer. Chem. Soc. 2003. V. 125. № 5. P. 1421; https://doi.org/10.1021/ja021036p
  44. Dopfer O., Solcà N., Lemaire J. et al. // J. Phys. Chem. A. 2005. V. 109. № 35. P. 7881; https://doi.org/10.1021/jp052907v
  45. Dopfer O. // J. Phys. Org. Chem. 2006. V. 19. № 8–9. P. 540; https://doi.org/10.1002/poc.1053
  46. Adamson S.O., Kharlampidi D.D., Shtyrkova A.S. et al. // Atoms. 2023. V. 11. № 10. 132; https://doi.org/10.3390/atoms11100132
  47. Vasiliev E.S., Karpov G.V., Shartava D.K. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 388; https://doi.org/10.1134/S1990793122030113
  48. Morozov I.I., Vasiliev E.S., Butkovskaya N.I. et al. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1091; https://doi.org/10.1134/S1990793123050251
  49. Morozov I.I., Vasiliev E.S., Volkov N.D. et al. // Russ. J. Phys. Chem. B 2022. V. 16. P. 877; https://doi.org/10.1134/S1990793122050220

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Structural models of ipso- (a), ortho- (b), meta- (c), para- (d) fluorocyclohexadienyl radicals, the C₆H₅F · H complex (d) and the transition complexes TS₁ (e) and TS₂ (g). Internuclear distances are given in angstroms, angles in degrees.

Baixar (274KB)
3. Fig. 2. Structural models of cations of ipso- (a), ortho- (b), F-isomer (c) of fluorocyclohexadienyl radicals and transition complexes TSoi (g), TSoF (e) and TSiF (e). The indices in the designations of the transition complexes correspond to the nomenclature of isomers: o – ortho-, i – ipso-, F-isomers. Internuclear distances are given in angstroms, angles – in degrees.

Baixar (280KB)
4. Fig. 3. Reactions of hydrogen abstraction and substitution in benzene. Relative energies are given in kcal/mol.

Baixar (69KB)
5. Fig. 4. Isomerization and decomposition reactions of the C₆H₆ F⁺ cation. Relative energies are given in kcal/mol.

Baixar (77KB)
6. Fig. 5. Absorption lines of the C₆H₆ F radical in the IR region of the spectrum: red dark lines are experimental data [10], white rectangles are scaled values ​​of the calculated frequencies of fundamental vibrations (scaling factor – 0.98).

Baixar (81KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024