Synthesis and magnetic properties of polymer composites containing manganese nanoparticles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Polymer composite materials based on manganese nanoparticles stabilized in the volume of a low-density polyethylene (LDPE) matrix or on the surface of polytetrafluoroethylene (PTFE) microgranules have been synthesized and studied. The composition, morphology, and structure of manganese-containing nanoparticles have been determined using X-ray phase analysis, transmission electron microscopy, and X-ray absorption spectroscopy. Their magnetic properties have been studied over a wide range of temperatures and magnetic fields. The influence of the type of polymer matrix and synthesis conditions on the formation of nanoparticles and their magnetic behavior is shown.

作者简介

V. Kirillov

Semenov Federal Research Center for Chemical Physics; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University

Email: kirillovladislav@gmail.com
Moscow, Russia; Moscow, Russia

G. Yurkov

Semenov Federal Research Center for Chemical Physics

Email: kirillovladislav@gmail.com
Moscow, Russia

A. Maksimova

Research Institute of Physics of Southern Federal University

Email: kirillovladislav@gmail.com
Rostov-on-Don, Russia

A. Kozinkin

Research Institute of Physics of Southern Federal University

Email: kirillovladislav@gmail.com
Rostov-on-Don, Russia

V. Vlasenko

Research Institute of Physics of Southern Federal University

Email: kirillovladislav@gmail.com
Rostov-on-Don, Russia

D. Zvyagintsev

The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research

Email: kirillovladislav@gmail.com
Moscow, Troitsk, Russia

A. Voronov

The Joint Stock Company State Research Center Of The Russian Federation Troitsk Institute For Innovation And Fusion Research

Email: kirillovladislav@gmail.com
Moscow, Troitsk, Russia

V. Solodilov

Semenov Federal Research Center for Chemical Physics; Center of the National Technological Initiative “Digital Materials Science: New Materials and Substances” Bauman Moscow State Technical University

Email: kirillovladislav@gmail.com
Moscow, Russia; Moscow, Russia

V. Buznik

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: kirillovladislav@gmail.com
Moscow, Russia

参考

  1. Роговина С.З., Гасымов М.М., Ломакин С.М. и др. // Хим. физика. 2023. Т. 42. № 11. С. 70. https://doi.org/10.31857/S0207401X23110080
  2. Stoia M., Păcurariu С., Mihali С. et al. // Ceramic. Int. 2019. V. 45. № 2. P. 2725. https://doi.org/10.1016/j.ceramint.2018.09.109
  3. Darwish M.S.A., Mostafa M.H., Al-Harbi L.M. // Int. J. Mol. Sci. 2022. V. 23. № 3. P. 1023. https://doi.org/10.3390/ijms23031023
  4. Khan I., Khan I., Saeed K. et al. // Smart Polym. Nanocompos. 2023. P. 167. https://doi.org/10.1016/B978-0-323-91611-0.00017-7
  5. Yurkov G.Y., Prorokova N.P., Kozinkin A.V. et al. // Mech. Compos. Mater. 2022. V. 58. № 5. P. 705. https://doi.org/10.1007/s11029-022-10061-y
  6. Горшенёв В.Н., Маклакова И.А., Яковлева М.А. // Хим. физика. 2024. T. 43. № 7. C. 111. https://doi.org/10.31857/S0207401X24070119
  7. Poddar P., Wilson J.L., Srikanth H. et al. // Nanotechnol. 2004. V. 15. № 10. P. S570. https://doi.org/10.1088/0957-4484/15/10/013
  8. Жуков А.М., Солодилов В.И., Третьяков И.В. и др. // Хим. физика. 2022. Т. 41. № 9. С. 64. https://doi.org/10.31857/S0207401X22090138
  9. Александрова В.А., Футорянская А.М. // Хим. физика. 2023. Т. 42. № 12. С. 66. https://doi.org/10.31857/S0207401X23120038
  10. Yurkov G.Yu., Kozinkin A.V., Shvachko O.V. et al. // J. App. Polym. Sci. 2022. V. 139. № 37. P. e52890. https://doi.org/10.1002/app.52890
  11. Aleksandrov I.A., Abramchuk S.S., Solodovnikov S.P. et al. // Polym. Sci. Ser. A. 2012. V. 54. № 5. P. 407. https://doi.org/10.1134/S0965545X1205001X
  12. Barrera G., Tiberto P., Allia P. et al. // App. Sci. 2019. V. 9. № 2. P. 212. https://doi.org/10.3390/app9020212
  13. Кириллов В.Е., Юрков Г.Ю., Коробов М.С. и др. // Хим. физика. 2023. Т. 42. № 11. С. 39. https://doi.org/10.31857/S0207401X23110043
  14. Kalia S., Kango S., Kumar A. et al. // Colloid Polym. Sci. 2014. V. 292. № 9. P. 2025. https://doi.org/10.1007/s00396-014-3357-y
  15. Liu Q., Yu L., Wang Y. et al. // Inorg. Chem. 2013. V. 52. № 6. P. 2817. https://doi.org/10.1021/ic301579g
  16. Shin H.-W., Sohn H., Jeong Y.-H. et al. // Langmuir. 2019. V. 35. № 19. P. 6421. https://doi.org/10.1021/acs.langmuir.9b00406
  17. Rybak A., Kaszuwara W. // J. Alloys Compd. 2015. V. 648. P. 205. https://doi.org/10.1016/j.jallcom.2015.06.197
  18. Gubin S.P., Yurkov G.Y., Kosobudsky I.D. // Int. J. Mater. Product Technol. 2005. V. 23. № 1/2. P. 2. https://doi.org/10.1504/IJMPT.2005.006587
  19. Gubin S.P., Korobov M.S., Yurkov G. Yu. et al. // Dokl. Akad. Nauk. 2003. V. 388. № 4–6. P. 44
  20. Тикадзуми С. Физика ферромагнетизма. Магнитные характеристики и практические применения. М.: Мир, 1987
  21. Sessoly R., Tsai H.-L., Shake A.R. et al. // J. Am. Chem. Soc. 1993. V. 115. № 5. P. 1804
  22. Korobov M.S., Yurkov G. Yu., Kozinkin A.V. et al. // Inorg. Materi. 2004. V. 40. № 1. P. 26 https://doi.org/10.1023/B:INMA.0000012175.13996.d7
  23. Yurkov G.Yu., Baranov D.A., Kozinkin A.V. et al. // Inorg Mater. 2006. V. 42. № 9. P. 1012. https://doi.org/10.1134/S0020168506090159

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025