Frequency dependencies of electrical characteristics of composite materials based on organosiloxanes and highly dispersed carbon fillers of various shapes

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Composites based on siloxane with additives of hybrid filler in the form of a mixture of spherical and extended carbon structures frequency characteristics are studied by electrometrical method. The effect of the filler type and concentration on the conductive properties of the composites, as well as the behavior of electrical resistance during mechanical stretching, was determined. The introduction of a hybrid filler into the composite significantly changes the value and depending type of electrical conductivity.

About the authors

E. I. Klimova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

V. I. Zhukov

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

G. O. Molokanov

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

O. O. Molokanova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

D. U. Selyakova

Immanuel Kant Baltic Federal University

Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

O. A. Molokanova

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: EIKlimova@kantiana.ru
Kaliningrad, Russia

References

  1. Ameri S.K., Kim M., Kuang I. et al. // Imperceptible electrooculography graphene sensor system for human–robot interface, npj 2D Materials and Applications. 2018. № 2. P. 1. https://doi.org/10.1002/adma.201505124
  2. Takeshita T., Yoshida M., Takei Y. et al. // Sci Rep. 2019. V. 9. P. 5897. https://doi.org/10.1038/s41598-019-42027-x
  3. Semenukha O. V., Voronina S. Yu. // Technology of the textile industry. 2023. № 6 (408). P. 241. https://doi.org/10.47367/0021-3497_2023_6_241
  4. Folorunso O., Hamam Y., Sadiku R. et al. // Polymers. 2019. V. 8. № 11. P. 1250. https://doi.org/10.3390/polym11081250
  5. Lu C., Liu E., Sun Q., Shao Y. // Polymers. 2024. № 17. P. 2496. https://doi.org/10.3390/polym16172496
  6. Jang S., Oh J.H. // Sci Rep. 2018. V. 8. P. 1.
  7. Simbirtseva G.V., Babenko S.D., Kiryukhin D.P., Arbuzov A.A. // Russ. J. Phys. Chem. B. 2023. V. 17. № 1. P. 107. https://doi.org/10.31857/S0207401X23010119
  8. Rogovina S.Z., Gasimov M.M., Lomakin S.M. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1376. https://doi.org/10.31857/S0207401X23110080
  9. Marinho B., Ghislandi M., Tkalya E. et al. // Powder Technol. 2012. V. 221. P. 351. https://doi.org/10.1016/j.powtec.2012.01.024
  10. Simbirtseva G.V., Piven N.P., Babenko S.D. // Russ. J. Phys. Chem. B. 2020. V. 14. № 6. P. 980.
  11. Onggar T., Kruppke I., Cherif C. // Polymers. 2020. V. 12. № 12. P. 2867. https://doi.org/10.3390/polym12122867
  12. Radzuan N., Sulong A., Sahari J. // Intern. J. Hydrogen Energy. 2017. V. 42. № 14. P. 9262. https://doi.org/10.1016/j.ijhydene.2016.03.045
  13. Taherian R., Kausar A. Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling, and Applications. Elsevier, 2018. https://doi.org/10.1016/C2016-0-03699-9
  14. Yang W., Gong Y., Li W. // Front. Bioeng. Biotechnol. 2020. V. 8. P. 622923.
  15. Vafaiee M., Ejehi F., Mohammadpour R. // Sci Rep. 2023. № 13. P. 370. https://doi.org/10.1038/s41598-023-27690-5
  16. Ward M.P., Rajdev P., Ellison C., Irazoqui P.P. // Brain Res. 2009. V. 1282. P. 183. https://doi.org/10.1016/j.brainres.2009.05.052
  17. Obidin N., Tasnim F., Dagdeviren C. // Adv. Mater. 2019. V. 32. № 15. P. 1901482. https://doi.org/10.1002/adma.201901482
  18. Patil A.C., Thakor N.V. // Med. Biol. Eng. Comput. 2016. V. 54. P. 23. https://doi.org/10.1007/s11517-015-1430-4
  19. Song E., Li J., Won S.M. et al. // Nat. Mater. 2020. V. 19. P. 590. https://doi.org/10.1038/s41563-020-0679-7
  20. Zhou Y., Burgoyne Morris G.H., Nair M. // Cell Rep. Phys. Sci. 2024. V. 5. № 8. P. 101852. https://doi.org/10.1016/j.xcrp.2024.101852
  21. Li Y., Ai Q., Mao L. et al. // Sci. Rep. 2021. V. 11. P. 21006.
  22. Avanesyan V.T., Puchkov M.Yu. // Izvestiya RSPU named after A. I. Herzen. 2009. № 95. P. 39 [In Russian].
  23. Luscheikin G.A. Methods for studying the electrical properties of polymers. Moscow: Khimiya, 1998 [In Russian].
  24. Van Krevelen D.V. Properties of Polymers: Correlations with Chemical Structure. Amsterdam: Elsevier, 1972.
  25. Blythe A.R. Electrical properties of Polymers. London B.Y.: Cambridge Univ. Press, 1980.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences