Numerical simulation of supersonic turbulent combustion of hydrogen in a stream of hot humid air

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of solving the validation problem of turbulent combustion of a hydrogen jet in a supersonic flow of hot humid air in a symmetrical channel. Special attention is paid to the solution of the system of equations of chemical kinetics, which imposes a significant restriction on the time step, as well as the analysis of kinetic schemes used in the solution. The main computational difficulty is the detailed resolution of the wall region, due to the injection of a hydrogen jet into a turbulent boundary layer, in order to further reproduce experimentally obtained distributions of mole fractions and temperature in the outlet section of the channel, as well as the location of the ignition point.

Full Text

Restricted Access

About the authors

А. М. Nikonov

Moscow Aviation Institute (National Research University)

Author for correspondence.
Email: amnikonov@mai.education
Russian Federation, Moscow

N. A. Kharchenko

Moscow Aviation Institute (National Research University)

Email: amnikonov@mai.education
Russian Federation, Moscow

References

  1. S.M. Frolov, V.S. Ivanov. Russ. J. Phys. Chem. B 15, 318 (2021). https://doi.org/10.1134/S1990793121020184
  2. V.N. Mikhalkin, S.I. Sumskoi, A.M. Tereza et al. Russ. J. Phys. Chem. B 16, 629 (2022). https://doi.org/10.1134/S1990793122040261
  3. S.M. Bosnyakov, M.E. Berezko, Yu.N. Deryugin et al. Math. modeling 35, 69 (2023). https://doi.org/10.20948/mm-2023-10-05
  4. N.A. Kharchenko, A.M. Nikonov. Math. modeling and num. methods 2, 100 (2023). https://doi.org/10.18698/2309-3684-2023-2-100128
  5. V.Ya. Basevich, A.A. Belyaev, S.M. Frolov et al. Russ. J. Phys. Chem. B 13, 75 (2019). https://doi.org/10.1134/S1990793119010044
  6. O.A. Bessonov, N.A. Kharchenko. Software Engineering 12, 302 (2021). https://doi.org/10.17587/prin.12.302-310
  7. N.A. Kharchenko. Numerical modelling of aerothermodynamics of high-speed aircraft. Phd Thesis (Phys. – Math.). Moscow: MIPT, 2021.
  8. F.R. Menter, M. Kuntz. Langtry R. Turbulence, Heat and Mass Transfer 4, 625 (2003).
  9. A.A. Matyushenko, A.V. Garabaruk. IOP Conf. Series: Journal of Physics 929, 6 (2017). https://doi.org/10.1088/1742-6596/929/1/012102
  10. N.A. Kharchenko, A.M. Nikonov, N.A. Nosenko. Proc. XXXIII scient. and tech. conf. on aerodynamics, TSAGI, 101 (2022).
  11. B.A. Zemlyansky, V.V. Lunev, V.I. Vlasov et al. Convective heat transfer of aircraft (Fizmatlit, Moscow, 2014).
  12. V.Ya. Basevich, A.A. Belyaev, V.S. Ivanov et al. Russ. J. Phys. Chem. B 13, 636 (2019). https://doi.org/10.1134/S1990793119040171
  13. Degtyar V.G., Son E.E. Hypersonic aircraft (Yanus-K, Moscow, 2018).
  14. L.V. Gurvich, I.V. Veits, V.A. Medvedev. Thermodynamics properties of individual substance (Nauka, Moscow, 1978).
  15. V.M. Zhdanov, V.S. Galkin, O.A. Gordeev et al. Physico-chemical processes in gas dynamics. Handbook. Models of molecular transfer processes in physico-chemical gas dynamics / Edited by S.A. Losev. 3 (Fizmatlit, Moscow, 2012).
  16. R.B. Bird, W.E. Stewart, E.W. Lightfoor. Transport Phenomena. 2nd ed / Edited by P. Kulek (Wiley, N.Y., 2002).
  17. M.-S. Liou. J. Comput. Phys. 129, 364 (1996). https://doi.org/10.1006/JCPH.1996.0256
  18. K. Kitamura. Advancement of Shock Capturing Computational Fluid Dynamics Methods: Numerical Flux Functions in Finite Volume Method (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-9011-5
  19. SS Chen, FJ Cai, HC Xue et al. Appl. Math. Model 77, 1065 (2020). https://doi.org/10.1016/j.apm.2019.09.005
  20. I.A. Kryukov, I.E. Ivanov, E.V. Larina. Physical-Chemical Kinetics in Gas Dynamics 22, 28 (2021). https://doi.org/10.33257/PhChGD.22.1.902
  21. K. Michalak, C. Ollivier-Gooch. Proc. 46th Aerospace Sciences Meeting. AIAA: Reno, Nevada, 15 10002 (2008). https://doi.org/10.2514/6.2008-776
  22. M.C. Burrows, A.P. Kurkov. AIAA J. 11, 1217 (1973).
  23. Z. Gao, C. Jiang, S. Pan et al. AIAA J. 53, 1949 (2015). https://doi.org/10.2514/1.J053585
  24. J.S. Evans, C.J. Schexnayder. Proc. 17th Aerospace Sciences Meeting. AIAA: New Orleans, LA, Paper 79-0355 (1979). https://doi.org/10.2514/6.1979-355
  25. J.H. Tien, J.S. Stalker. Combustion and Flame 130, 329 (2002). https://doi.org/10.1016/S0010-2180(02)00371-1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the calculation grid of a flat channel

Download (143KB)
3. Fig. 2. Distribution of the mass fraction of H2O (a) and static temperature (K) in the channel (b); modified Evans–Schäxnayder hydrogen combustion mechanism

Download (111KB)
4. Fig. 3. Distribution of mole fractions of gas mixture components (a) and static (T, K) and total temperatures (T0, K) in the outlet section of the channel (b); modified Evans–Schäxnayder hydrogen combustion mechanism

Download (184KB)
5. Fig. 4. Distribution of the mass fraction of H2O (a) static temperature (K) in the channel (b); modified Yakimovsky hydrogen combustion mechanism; symbols – experimental data, lines – results of numerical simulation

Download (113KB)
6. Fig. 5. Distribution of mole fractions of gas mixture components (a) and static (T, K) and total temperature (T0, K) in the outlet section of the channel (b); modified Yakimovsky hydrogen combustion mechanism; symbols are experimental data, lines are results of numerical simulation

Download (181KB)

Copyright (c) 2025 Russian Academy of Sciences