The effect of disordered perturbations on the entropy of an unstable system
- Authors: Lebed I.V.1
-
Affiliations:
- Institute of Applied Mechanics of the Russian Academy of Sciences
- Issue: Vol 43, No 9 (2024)
- Pages: 95-106
- Section: ДИНАМИКА ТРАНСПОРТНЫХ ПРОЦЕССОВ
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/680971
- DOI: https://doi.org/10.31857/S0207401X24090116
- ID: 680971
Cite item
Abstract
The contribution of disordered perturbations in density, velocity and pressure to the pair entropy of an unstable system, which sets the direction of its evolution, is estimated. Disordered perturbations arising in the incoming flow due to external influence are calculated by numerical integration of regular equations of multimoment hydrodynamics supplemented with stochastic components. The calculation of the distortion of the pair entropy of the system due to disordered perturbations is performed in the problem of flow around a stationary solid sphere. It is established that disordered perturbations of density, velocity and pressure do not have any noticeable effect on the parameters of the vortex street in the wake behind the sphere.
Keywords
Full Text

About the authors
I. V. Lebed
Institute of Applied Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: lebed-ivl@yandex.ru
Russian Federation, Moscow
References
- I.V. Lebed, Russ. J. Phys. Chem. B 8(2), 240 (2014). A.Ph. Kiselev, I.V. Lebed, Chaos Solitons Fractals 142, №110491 (2021).
- I.V. Lebed, Russ. J. Phys. Chem. B 18(5), (2024).
- I.V. Lebed, Chem. Phys. Rep. 17(1–2), 411 (1998).
- I.V. Lebed, The Foundations of Multimoment Hydrodynamics, Part 1: Ideas, Methods andEquations (Nova Science Publishers, N-Y, 2018).
- I.V. Lebed, Chem. Phys. Rep. 16(4), 1263 (1997).
- A.Ph. Kiselev, I.V. Lebed, Russ. J. Phys. Chem. B 15(1), 189 (2021).
- I.V. Lebed, Russ. J. Phys. Chem. B 16(1), 197 (2022)
- H. Sakamoto, H. Haniu, J. Fluid Mech. 287, 151 (1995).
- L.G. Loitsyanskii, Mechanics of Liquids and Gases (Pergamon, Oxford, 1966).
- A.S. Monin, A.M. Yaglom, Statistical Hydromechanics, Part 1 (Nauka, Moscow, 1965)
- R. Natarajan and A. Acrivos, J. Fluid Mech. 254, 323 (1993).
- K.Hannemann, H. Oertel Jr., J. Fluid Mech. 199, 55 (1989).
- H.G. Schuster, Deterministic Chaos (Physik Verlag, Weinheim, 1984).
- A.G. Tomboulides and S.A. Orszag, J. Fluid Mech. 416, 45 (2000).
- D. Ruelle, F. Takens, Commun. Math. Phys. 20, 167 (1971).
- I.V. Lebed, Russ. J. Phys. Chem. B 17(6), 1414 (2023).
- A.A. Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, 1956).
- H.K. Moffatt, J. Fluid Mech.. 106, 27 (1981).
- I.V. Lebed, S.Y. Umanskii, Russ. J. Phys. Chem. B 1(1), 52 (2007).
- J.M. Chomaz, P. Bonneton, E.J. Hopfinger, J. Fluid Mech. 234, 1 (1993).
- A. Ph. Kiselev, I.V. Lebed, Russ. J. Phys. Chem. B 15(5), 895 (2021).
- I.V. Lebed, Russ. J. Phys. Chem. B 17(5), 1194 (2023).
- I.V. Lebed, Russ. J. Phys. Chem. B 16(2), 370 (2022).
Supplementary files
