Oxidation of the Styrene Epoxide – Hydroquinone – Copper(II) Chloride Ternary System in a Methanol Solution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The consumption of styrene epoxide (SE) and hydroquinone (HQ) in a ternary TrS system (SE – HQ – Cu(II)) in an oxygen atmosphere in a methanol solution was studied. Oxygen uptake by the triple system SE – HQ – CuCl2 was studied manometrically. Expression of velocity in terms of reagent concentrations V = k [Cu(II)]1 [HQ]0 [SE]0, the effective oxidation rate constant k = 1.82×105 exp(– 40 kJ mol-1/RT) s-1, (308–323) K. The mechanism of oxidation of TrS is discussed.

Full Text

Restricted Access

About the authors

L. V. Petrov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: plv@acp.ac.ru
Russian Federation, Chernogolovka

V. M. Solyanikov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences

Email: plv@acp.ac.ru
Russian Federation, Chernogolovka

References

  1. Ch. Schneider, Synthesis 23, 3919 (2006). https://doi.org/ 10.1055/s-2006-950348
  2. G. Sabitha, R. Satheesh Babu, M. Rajkumar, Ch. Srinivas Reddy, J.S. Yadav, Tetrahedron Lett. 42, 3955 (2001). https://doi.org/10.1016/S0040-4039(01)00622-0
  3. Y.-X. Zhou, Y.-Z. Chen, Y. Hu, G. Huang, S.-H. Yu, H.-L. Jiang, Chem. Eur. J. 20, 1 (2014). https://doi.org/ 10.1002/chem. 201404104
  4. Y. Zhang, M. Wang, P. Li, L. Wang, Org. Lett. 14, 2206 (2012). https://doi.org/10.1021/o1300391t
  5. D.A. Denisov, R.A. Novikov, Y.V. Tomilov, Russ. Chem. Bull. 70, 1568 (2021). https://doi.org/10.1007/S11172-021-3253-9
  6. R.E. Parker, N.S. Isaacs, Chem. Rev. 53, 737 (1959). https://doi.org/10.1021/cr50028a006
  7. A.M. Ross, T.M. Pohl, K. Piazza, M. Thomas, B. Fox, D.L. Whalen, J. Am. Chem. Soc. 104, 1658 (1982). https://doi.org/10.1021/ja00370a035
  8. A. Lundin, I. Panas, E. Ahlberg, J. Phys. Chem. A 111, 9087 (2007). https://doi.org/10.1021/jp073285b
  9. P.O. Wennberg, D.G. VanderVelde, N.C. Eddingsaas, J. Phys. Chem. A 114, 8106 (2010). https://doi.org/10.1021/jp103907c
  10. Z. Huan, Ch. Yung, Z. Ma, E.R. Gainer, D. Li, J. Phys. Chem. A 118, 1557 (2014). https://doi.org/10.1021/jp501310z
  11. L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 64, 107 (2015).
  12. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 10, 764 (2016). https://doi.org/10.1134/S1990793116050225
  13. L.V. Petrov, V.M. Solyanikov, Pet. Chem. 57, 734 (2017). https://doi.org/10.1134/S0965544117080114
  14. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 12, 1003 (2018). https://doi.org/10.1134/S1990793118060179
  15. L.V. Petrov, V.M. Solyanikov, Russ. Chem. Bull. 69, 1869 (2020). https://doi.org/10.1007/S11172-020-2972-7
  16. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 599 (2021). https://doi.org/10.1134/S1990793121040084
  17. V.A. Menshov, V.D. Kancheva, O.L. Yablonskaya, A.V. Trofimov, Russ. J. Phys. Chem. B 15, 108 (2021). https://doi.org/10.1134/S1990793121010231
  18. I.F. Rusina, T.L. Veprintsev, R.F. Vasil’ev, Russ. J. Phys. Chem. B 16, 50 (2022). https://doi.org/10.1134/S1990793122010274
  19. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 15, 960 (2021). https://doi.org/10.1134/S1990793121060075
  20. L.V. Petrov, B. L. Psikha, V.M. Solyanikov, Pet. Chem. 49, 263 (2009).
  21. L.V. Petrov, V.M. Solyanikov, Pet. Chem. 39, 107 (1999).
  22. L.V. Petrov, V.M. Solyanikov, Russ. J. Phys. Chem. B 17, 1259 (2023). https://doi.org/10.1134/S1990793123060234

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kinetics of transformation of the triple system ES– GC– CuCl2; experiments with the introduction of third components into the corresponding binary systems: light dots are an experiment with the introduction of ES into the dual system GC–CuCl2, dark dots are an experiment with the introduction of GC into the dual system ES–CuCl2, the moments of entry are marked with vertical arrows. Circles – ES, squares – GC, triangles – BX, diamonds – BA. Oxygen bubbling, [ES]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 11.5 × 10-4 mol/L, solvent – methanol, 318 K.

Download (45KB)
3. 2. Kinetic curves of oxygen absorption: 1 – by the triple ES – GC – CuCl2 system; 2a – by the double ES – CuCl2 system; 2b – after the introduction of hydroquinone into the double system (marked with arrow); 3a – by the double GC – CuCl2 system; 3b – after the introduction of epoxide into the double system. [EC]0 = 0.35, [GC]0 = 0.031, [CuCl2] = 5.76 ×10-4 mol/L, solvent – methanol, 323 K.

Download (36KB)
4. 3. Kinetic curves of consumption of epoxide (1) and hydroquinone (2); accumulation curves of benzoquinone (3) and benzaldehyde (4) in a solution of the triple system ES – GC – CuCl2. Bubbling O2, [EC]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 11.5 × 10-4 mol/L, solvent – methanol, 318 K.

Download (43KB)
5. 4. Dependences of the oxidation rate of the ES–GC –CuCl2 ternary system on [CuCl2] at [EC]0 = 0.69 and [GC]0 = 0.031 mol/L (1); on [EC] at [GC]0 = 0.031 and [CuCl2] = 5.8 ×10-4 mol/ll (2). Oxygen bubbling, solvent – methanol, 318 K.

Download (37KB)
6. Fig. 5. Dependences of the oxidation rate of the ES– GC – CuCl2 ternary system in a methanol solution (318 K) at [EC]0 = 0.69 and [CuCl2] = 5.8 × 10-4 mol/l: on [GC] (1) and on the oxygen content (vol. %) in the gas mixture at [GC]0 = 0.031 mol/L (2).

Download (27KB)
7. 6. Determination of the oxidation activation energy of the ES – GC – CuCl2 ternary system; Arrhenius dependence of lgV on 103/T; [ES]0 = 0.69, [GC]0 = 0.031, [CuCl2] = 9.3×10-4 mol/l, solvent – methanol.

Download (18KB)
8. Fig. 7. Kinetic curves 1-3 of benzoquinone accumulation at –CuCl2] = (2.9 ∙ 10-4, 5.8 ∙ 10-4, 11.5 ∙ 10-4 mol/l, respectively; dependence of the initial rates of accumulation of HC calculated from the tangents of the slope angles of dashed curves 1-3 on [CuCl2] (4). Oxygen bubbling, [ES]0 = 0.69, [GC]0 = 0.031, solvent – methanol, 318 K.

Download (53KB)

Copyright (c) 2024 Russian Academy of Sciences