Properties of water adsorbed in porous silica gels with different shapes of microparticle

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A comparison was made of the relaxation, diffusion and calorimetric characteristics of samples with different water content in the pores of Separon SGX and Silasorb 600 silica gels, which differ in the shape (regular and irregular) of microparticles. It has been shown that the layer of water experiencing the relaxation effect of the surface in the pores has constant dimensions for these silica gels. It has been established that the surface relaxation efficiency, the ratio of relaxation times T1 /T2, which reflects the phase state of water, does not change depending on the water content in the sample. It was found that the patterns of changes in the time of spin-lattice T1 and spin-spin T2 relaxation of water protons, the amount of freezing (FW) and non-crystallizing (NFW) water when changing the moisture content in samples with different shapes of silica gel microparticles have a similar character. The dependence of diffusion coefficients on the water content in silica gels made it possible to calculate the value of the characteristic pore parameter S/V and compare it with the characteristics declared by the manufacturer. The noticeable deviation for Silasorb 600 can be explained both by the difference in the distribution of pore sizes and by the difference in the nature of diffusion processes, which is a consequence of the irregular shape of the microparticles.

Full Text

Restricted Access

About the authors

A. I. Sergeev

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: nismpa@mail.ru
Russian Federation, Moscow

N. G. Shilkina

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: nismpa@mail.ru
Russian Federation, Moscow

I. I. Barashkova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: nismpa@mail.ru
Russian Federation, Moscow

I. A. Maklakova

Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: nismpa@mail.ru
Russian Federation, Moscow

References

  1. G. Peschel, K.H. Aldfinger. J. Colloid Interface Sci., 34, 505 (1970). https://doi.org/10.1016/0021-9797(70)90212-2
  2. F.M. Etzler, J. J. Conners, Langmuir, 7, 2293 (1991).
  3. C.F. Polnaszek, D.A. Hanggi, P.W. Carr et al. Anal. Chim. Acta, 194, 311 (1987). https://doi.org/10.1016/S0003-2670(00)84786-8
  4. M.S. Metzik, G.D. Perevertaev, V.A. Liopo et al. J.Colloid Interface Sci., 43, 662 (1973). https://doi.org/10.1016/0021-9797(73)90412-8
  5. V.V. Morariu, R. Mills. Z. Phys. Chem., 79, 1 (1972). https://doi.org/10.1524/zpch.1972.79.1_2.001
  6. K.R. Brownstein, C.E. Tarr. Phys. Rev. A, 19, 2446 (1979). https://doi.org/10.1103/PhysRevA.19.2446
  7. W.E. Troyer, R. Holly, H. Peemoelleret et al. Solid State Nucl. Magn. Reson., 28, 238 (2005). https://doi.org/10.1016/j.ssnmr.2005.10.003
  8. C. Cadar, C. Cotet, L. Baia et al. Microporous Mesoporous Mater., 251, 19 (2017). https://doi.org/10.1016/j.micromeso.2017.05.033
  9. A.T. Krzyżak, I. Habina. Microporous and Mesoporous Mater., 231, 230 (2016). https://doi.org/10.1016/j.micromeso.2016.05.032
  10. C.L. Jackson, G.B. McKenna. J. Chem. Phys. 93, 9002 (1990). https://doi.org/10.1063/1.459240
  11. H. Strange, M.E. Rahman, E.G. Smith. Phys. Rev. Lett., 71, 3589 (1993). https://doi.org/10.1103/physrevlett.71.3589
  12. Modified silica in sorption, catalysis and chromatography, Ed. by G.V. Lisichkin (Khimiya, Moscow 1986) [in Russian].
  13. Reversed Phase Chromatography / LCGCʼs CROMacademy. www.chromacademy.com
  14. K. Ishikiriyama, M. Todoki. Thermochim. Acta, 256, 213 (1995). https://doi.org/10.1016/0040-6031(94)02174-m
  15. R.B. Zaripov, I.T. Khairutdinov, K.M. Salikhov. Russ. J. Phys. Chem. B, 15, 389 (2021). https://doi.org/10.31857/S0207401X21060170
  16. A.A. Lundin, V.E. Zobov. Russ. J. Phys. Chem. B, 15, 839 (2021). https://doi.org/10.31857/S0207401X21090077)
  17. E.O. Stejskal, J.E. Tanner. J. Chem. Phys., 42, 288 (1965). https://doi.org/10.1063/1.1695690
  18. W. Halperin, S. Bhattacharja, F.D’Orazio. Magn. Reson. Imaging, 9, 733 (1991). https://doi.org/10.1016/0730-725X(91)90365-S
  19. S.R. Veith, E. Hughes, G. Vuataz et al. J. Colloid Interface Sci., 274, 216 (2004). https://doi.org/10.1016/j.jcis.2003.12.036
  20. B.M. Odintsov, A.N. Temnikov, Z.Sh. Idiyatullin et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 157, 177 (1999). https://doi.org/10.1016/S0927-7757(99)00002-3
  21. J. Mitchell, J. Beau, W. Webber et al. Physics Reports, 461, 1 (2008). https://doi.org/10.1016/j.physrep.2008.02.001
  22. M.H. Cohen, K.S. Mendelson. J. Appl. Phys. 53, 1127 (1982). https://doi.org/10.1063/1.330526
  23. G. Rennie, J. Clifford. J. Chem. Soc., Faraday Trans. 1, 73, 680 (1977). https://doi.org/10.1039/F19777300680
  24. A.F. Valov, V.A. Avetisov. Russ. J. Phys. Chem. B, 16, 474 (2022). https://doi.org/10.31857/S0207401X22050107
  25. P.P. Mitra, P.N. Sen, L.M. Schwartz. Phys. Rev. B, 47, 8565 (1993). https://doi.org/10.1103/PhysRevB.47.8565
  26. M.B. Tanis-Kanbur, R.I. Peinador, J.I. Calvo, A. Hernández, J. W. Chew. J. Membr. Sci., 619, (2021). https://doi.org/10.1016/j.memsci.2020.118750
  27. M. Niknam, J. Liang, J.Walia et al., Microporous Mesoporous Mater., 162, 136 (2012). https://doi.org/10.1016/j.micromeso.2012.06.010
  28. B.P. Hills, S.F. Takacs, P.S. Belton. Mol. Phys., 67, 919 (1989). https://doi.org/10.1080/00268978900101541
  29. B.P. Hills, S.F. Takacs, P.S. Belton. Mol. Phys., 67, 903 (1989). https://doi.org/10.1080/00268978900101531
  30. J.P. Carver, R.E. Richards. J. Magnetic Resonance, 6, 89 (1972). https://doi.org/10.1016/0022-2364(72)90090-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electron micrographs of particles of the studied silica gels: a – Silasorb 600, b – Separon SGX.

Download (218KB)
3. Fig. 2. Change in the spin-spin relaxation time T2 depending on the degree of humidity of silica gel Silasorb 600: ○ – short component, • – long component.

Download (60KB)
4. Fig. 3. Spin-spin relaxation time of water in samples of silica gels Separon SGX (○) and Silasorb 600 (■) at low humidities.

Download (55KB)
5. Fig. 4. Thermogram of ice melting in pores.

Download (77KB)
6. Fig. 5. Change in the amount of non-freezing (■) and freezing (○) water in the pores of silica gel Silasorb 600 depending on the moisture content in the sample.

Download (79KB)
7. Fig. 6. Change in the amount of non-freezing (■) and freezing (∆) water in the pores of Separon SGX silica gel depending on the moisture content in the sample.

Download (72KB)
8. Fig. 7. Diffusion coefficient of water molecules in silica gel samples Separon SGX (a) and Silasorb 600 (b) at different humidity levels depending on the time between magnetic gradient pulses ∆.

Download (206KB)
9. Fig. 8. Change in the amplitude of the signal from water in the pores of Separon SGX silica gel during melting: A – section of ice melting in pores, B – section of ice melting in free volume.

Download (64KB)
10. Fig. 9. Pore size distributions in Separon SGX (■) and Silasorb 600 (○) silica gel samples obtained by cryoporometry.

Download (68KB)
11. Fig. 10. Dependences of the spin-spin relaxation rate (1/T2) on the inverse time between 90° and 180° pulses (τ) at different humidity levels of Silasorb 600 silica gel: ♦ – 0.41, Δ – 0.86, ▲ – 1.29, ○ – 1.74, ■ – 2.1 g H2O/g silica gel.

Download (64KB)

Copyright (c) 2025 Russian Academy of Sciences