Ignition of anthracite by a laser pulse
- Authors: Aduyev B.P.1, Nurmukhametov D.R.1, Liskov I.Y.1
-
Affiliations:
- Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
- Issue: Vol 44, No 3 (2025)
- Pages: 37-48
- Section: Combustion, explosion and shock waves
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/679467
- DOI: https://doi.org/10.31857/S0207401X25030047
- ID: 679467
Cite item
Abstract
The ignition of tableted samples (ρ = 1 g/cm3) of microparticles (d ≤ 63 microns) of anthracite by laser pulses (532 nm, 10 ns, (0.15–0.5) 109 W/cm2) was studied. When the critical energy density Hcr(1) ≈ 0.15 J/cm2 is exceeded, an optical breakdown of the sample surface occurs during the laser pulse and the formation of a plasma flare with a lifetime of ≥ 5 microseconds. The amplitude of the plasma glow, depending on the energy density of the laser pulses, is described in the framework of the optical breakdown model. The presence of the following atoms and molecules in plasma was identified by the luminescence spectra: C, C+, Ca+, Fe+, Fe, CN, C2, CO. At a density of H > Hcr(2), in anthracite samples, as in hard coals, thermochemical reactions are initiated in the volume of microparticles, the release and ignition of volatile substances and №n-volatile residue in a submillisecond time interval.
Keywords
Full Text

About the authors
B. P. Aduyev
Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
Email: lesinko-iuxm@yandex.ru
Институт углехимии и химического материаловедения
Russian Federation, KemerovoD. R. Nurmukhametov
Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
Email: lesinko-iuxm@yandex.ru
Институт углехимии и химического материаловедения
Russian Federation, KemerovoI. Y. Liskov
Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: lesinko-iuxm@yandex.ru
Институт углехимии и химического материаловедения
Russian Federation, KemerovoReferences
- V.M. Kislov, M.V. Tsvetkov, A.Y. Zaichenko et al. Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 819. https://doi.org/10.1134/S1990793121050055
- L.D. Paul, R.R. Seeley. Corrosion. 1991. V. 47. № 2. P. 152. https://doi.org/10.5006/1.3585231
- A.S. Askarova, E.I. Karpenko, Y.I. Lavrishcheva et al. IEEE Transactions on Plasma Sci. 2007. V. 35. P. 1607. https://doi.org/10.1109/TPS.2007.910142
- V.E. Masserle, E.I. Karpenko, A.B. Ustimenko, O.A. Lavrichshev. Fuel Proc. Tech. 2013. V. 107. P. 93. https://doi.org/10.1016/j.fuproc.2012.07.001
- G.S. Tuktakiev, L.L. Laiko. Method of burning pulverized fuel RU 2557967 C1. 2015. № 21. P. 11.
- G.S. Tuktakiev, L.L. Laiko. Method of burning pulverized fuel RU 2559658 C1. 2015. № 22. P. 11.
- A.G.Korotkikh, I.V. Sorokin, E.A. Selikhova, V.A. Arkhipov. Russ. J. Phys. Chem. B. 2020. V. 14. № 4. P. 592. https://doi.org/10.1134/S1990793120040089
- T.X. Phuoc, M.P. Mathur, J.M. Ekmann. Combust. and Flame. 1993. V. 93. № 1–2. P. 19. https://doi.org/10.1016/0010- 2180(93)90081-D
- S.D. Vartak, S.R. Gubba, K.L. Narayanan et al. System and method for laser ignition of fuel in a coal-fired burner WO2022/126074 A1 // 2022. P. 37.
- S.V. Valiulin, A.A. Onischuk, V.V. Zamashchikov et al. Russ. J. Phys. Chem. B. 2021. V. 15. № 2. P.291. https://doi.org/10.1134/S199079312102024X
- M. Taniguchi, H. Kobayashi, K. Kiyama, Y. Shimogori. Fuel. 2009. V. 88. № 8. P. 1478.
- Q. Yang, Z. Peng. Interb. J. Hydrogen Energy. 2010. V. 35. № 10. P. 4715.
- E.V. Manzhos, A.A. Korzhavin, Ya.V. Kozlov, I.G. Namyatov. Comb. and expl. 2021. V. 14. № 3. P. 98. https://doi.org/10.30826/CE21140309
- J.C. Chen, M. Taniguchi, K. Narato, K. Ito. Combust. and Flame. 1994. V. 97. № 1. P. 107. https://doi.org/10.1016/0010- 2180(94)90119-8
- A.F. Glova, A.Yu. Lysikov, M.M. Zverev. Quantum Electron. 2009. V. 39. № 6. P. 537. https://doi.org/10.1070/QE2009v039n06ABEH013906
- M. Taniguchi, H. Kobayashi, K. Kiyama, Y. Shimogori. Fuel. 2009. V. 88. № 8. P. 1478. https://doi.org/10.1016/j.fuel.2009.02.009
- V.M. Boiko, P. Volan’skii, V.F. Klimkin. Combust. Explos. Shock. Waves. 1981. V. 17. № 5. P. 545. https://doi.org/10.1007/BF00798143
- V.A. Pogodaev. Comb., Expl. Shock Waves. 1984. V. 20. P. 46. https://doi.org/10.1007/BF00749917
- A.V. Kuzikovskii, V.A. Pogodaev. Combust. Explos. Shock. Waves. 1977. V. 13. № 5. P. 666. https://doi.org/10.1007/BF00742231
- T.X. Phuoc, M.P. Mathur, J.M. Ekmann. Combust. Flame. 1993. V. 94. № 4. P. 349. https://doi.org/10.1016/0010- 2180(93)90119-Ng
- B.P. Aduev, Y.V. Kraft, D.R. Nurmukhametov, Z.R. Ismagilov. Combust. Sci. Tech. 2024. V. 196. № 2. P. 274. https://doi.org/10.1080/00102202.2022.2075699
- B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov. Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 227. https://doi.org/10.1134/S1990793122020026
- B.P. Aduev, D.R. Nurmukhametov, N.V. Nelyubina et al. Russ. J. Phys. Chem. B. 2023. V. 17. P. 361. https://doi.org/10.31857/S0207401X23030032
- B.P. Aduev, D.R. Nurmukhametov, N.V. Nelyubina et al. J. Appl. Spectrosc. 2021. V. 88. № 4. P. 761. https://doi.org/10.1007/s10812-021-01237-w
- B.P. Aduev, D.R. Nurmukhametov, G.M. Belokurov et al. Solid Fuel Chem. 2021. V. 55. № 3. P. 194. https://doi.org/10.3103/S0361521921030022
- B.P. Aduev, D.R. Nurmukhametov, I.Yu. Liskov, Z.R. Ismagilov. Quantum Electron. 2023. V. 53. № 5. P. 430.
- B.P. Aduev, D.R. Nurmukhametov, V.D. Volkov et al. J. Appl. Spectrosc. 2023. V. 90. № 4. P. 805. https://doi.org/10.1007/s10812-023-01599-3
- L.V. Levshin, A.M. Saletsky. Luminescence and its measurements. Moscow: Moscow University Press,1989.
- B.P. Aduev, D.R. Nurmukhametov, A.A. Zvekov et al. Instrum. Exp. Techniq. 2015. V. 58. № 6. P. 765. https://doi.org/10.1134/S0020441215050012
- N.B. Delone Basics of Interaction of Laser Radiation with Matter. France: Atlantica Séguier Frontières, 1993.
- NIST. Standard Reference Database 78. https://dx.doi.org/10.18434/T4W30F
- J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato. J. Phys. D. 2018. V. 41. № 21. P. 215206. https://doi.org/10.1088/0022-3727/41/21/215206
- R. Pierce, A. Geydon. The identification of molecular spectra. London: Chapman & Hall Ltd., 1941.
- LIFBASE. Database and spectral simulation for diatomic molecules (v. 1.6). https://www.sri.com/platform/lifbase-spectroscopy-tool/
Supplementary files
