Ignition of anthracite by a laser pulse

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ignition of tableted samples (ρ = 1 g/cm3) of microparticles (d ≤ 63 microns) of anthracite by laser pulses (532 nm, 10 ns, (0.15–0.5) 109 W/cm2) was studied. When the critical energy density Hcr(1) ≈ 0.15 J/cm2 is exceeded, an optical breakdown of the sample surface occurs during the laser pulse and the formation of a plasma flare with a lifetime of ≥ 5 microseconds. The amplitude of the plasma glow, depending on the energy density of the laser pulses, is described in the framework of the optical breakdown model. The presence of the following atoms and molecules in plasma was identified by the luminescence spectra: C, C+, Ca+, Fe+, Fe, CN, C2, CO. At a density of H > Hcr(2), in anthracite samples, as in hard coals, thermochemical reactions are initiated in the volume of microparticles, the release and ignition of volatile substances and №n-volatile residue in a submillisecond time interval.

Full Text

Restricted Access

About the authors

B. P. Aduyev

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru

Институт углехимии и химического материаловедения 

Russian Federation, Kemerovo

D. R. Nurmukhametov

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Email: lesinko-iuxm@yandex.ru

Институт углехимии и химического материаловедения 

Russian Federation, Kemerovo

I. Y. Liskov

Federal Research Center of Coal and Coal-Chemistry of Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: lesinko-iuxm@yandex.ru

Институт углехимии и химического материаловедения 

Russian Federation, Kemerovo

References

  1. V.M. Kislov, M.V. Tsvetkov, A.Y. Zaichenko et al. Russ. J. Phys. Chem. B. 2021. V. 15. № 5. P. 819. https://doi.org/10.1134/S1990793121050055
  2. L.D. Paul, R.R. Seeley. Corrosion. 1991. V. 47. № 2. P. 152. https://doi.org/10.5006/1.3585231
  3. A.S. Askarova, E.I. Karpenko, Y.I. Lavrishcheva et al. IEEE Transactions on Plasma Sci. 2007. V. 35. P. 1607. https://doi.org/10.1109/TPS.2007.910142
  4. V.E. Masserle, E.I. Karpenko, A.B. Ustimenko, O.A. Lavrichshev. Fuel Proc. Tech. 2013. V. 107. P. 93. https://doi.org/10.1016/j.fuproc.2012.07.001
  5. G.S. Tuktakiev, L.L. Laiko. Method of burning pulverized fuel RU 2557967 C1. 2015. № 21. P. 11.
  6. G.S. Tuktakiev, L.L. Laiko. Method of burning pulverized fuel RU 2559658 C1. 2015. № 22. P. 11.
  7. A.G.Korotkikh, I.V. Sorokin, E.A. Selikhova, V.A. Arkhipov. Russ. J. Phys. Chem. B. 2020. V. 14. № 4. P. 592. https://doi.org/10.1134/S1990793120040089
  8. T.X. Phuoc, M.P. Mathur, J.M. Ekmann. Combust. and Flame. 1993. V. 93. № 1–2. P. 19. https://doi.org/10.1016/0010- 2180(93)90081-D
  9. S.D. Vartak, S.R. Gubba, K.L. Narayanan et al. System and method for laser ignition of fuel in a coal-fired burner WO2022/126074 A1 // 2022. P. 37.
  10. S.V. Valiulin, A.A. Onischuk, V.V. Zamashchikov et al. Russ. J. Phys. Chem. B. 2021. V. 15. № 2. P.291. https://doi.org/10.1134/S199079312102024X
  11. M. Taniguchi, H. Kobayashi, K. Kiyama, Y. Shimogori. Fuel. 2009. V. 88. № 8. P. 1478.
  12. Q. Yang, Z. Peng. Interb. J. Hydrogen Energy. 2010. V. 35. № 10. P. 4715.
  13. E.V. Manzhos, A.A. Korzhavin, Ya.V. Kozlov, I.G. Namyatov. Comb. and expl. 2021. V. 14. № 3. P. 98. https://doi.org/10.30826/CE21140309
  14. J.C. Chen, M. Taniguchi, K. Narato, K. Ito. Combust. and Flame. 1994. V. 97. № 1. P. 107. https://doi.org/10.1016/0010- 2180(94)90119-8
  15. A.F. Glova, A.Yu. Lysikov, M.M. Zverev. Quantum Electron. 2009. V. 39. № 6. P. 537. https://doi.org/10.1070/QE2009v039n06ABEH013906
  16. M. Taniguchi, H. Kobayashi, K. Kiyama, Y. Shimogori. Fuel. 2009. V. 88. № 8. P. 1478. https://doi.org/10.1016/j.fuel.2009.02.009
  17. V.M. Boiko, P. Volan’skii, V.F. Klimkin. Combust. Explos. Shock. Waves. 1981. V. 17. № 5. P. 545. https://doi.org/10.1007/BF00798143
  18. V.A. Pogodaev. Comb., Expl. Shock Waves. 1984. V. 20. P. 46. https://doi.org/10.1007/BF00749917
  19. A.V. Kuzikovskii, V.A. Pogodaev. Combust. Explos. Shock. Waves. 1977. V. 13. № 5. P. 666. https://doi.org/10.1007/BF00742231
  20. T.X. Phuoc, M.P. Mathur, J.M. Ekmann. Combust. Flame. 1993. V. 94. № 4. P. 349. https://doi.org/10.1016/0010- 2180(93)90119-Ng
  21. B.P. Aduev, Y.V. Kraft, D.R. Nurmukhametov, Z.R. Ismagilov. Combust. Sci. Tech. 2024. V. 196. № 2. P. 274. https://doi.org/10.1080/00102202.2022.2075699
  22. B.P. Aduev, D.R. Nurmukhametov, Y.V. Kraft, Z.R. Ismagilov. Russ. J. Phys. Chem. B. 2022. V. 16. № 6. P. 227. https://doi.org/10.1134/S1990793122020026
  23. B.P. Aduev, D.R. Nurmukhametov, N.V. Nelyubina et al. Russ. J. Phys. Chem. B. 2023. V. 17. P. 361. https://doi.org/10.31857/S0207401X23030032
  24. B.P. Aduev, D.R. Nurmukhametov, N.V. Nelyubina et al. J. Appl. Spectrosc. 2021. V. 88. № 4. P. 761. https://doi.org/10.1007/s10812-021-01237-w
  25. B.P. Aduev, D.R. Nurmukhametov, G.M. Belokurov et al. Solid Fuel Chem. 2021. V. 55. № 3. P. 194. https://doi.org/10.3103/S0361521921030022
  26. B.P. Aduev, D.R. Nurmukhametov, I.Yu. Liskov, Z.R. Ismagilov. Quantum Electron. 2023. V. 53. № 5. P. 430.
  27. B.P. Aduev, D.R. Nurmukhametov, V.D. Volkov et al. J. Appl. Spectrosc. 2023. V. 90. № 4. P. 805. https://doi.org/10.1007/s10812-023-01599-3
  28. L.V. Levshin, A.M. Saletsky. Luminescence and its measurements. Moscow: Moscow University Press,1989.
  29. B.P. Aduev, D.R. Nurmukhametov, A.A. Zvekov et al. Instrum. Exp. Techniq. 2015. V. 58. № 6. P. 765. https://doi.org/10.1134/S0020441215050012
  30. N.B. Delone Basics of Interaction of Laser Radiation with Matter. France: Atlantica Séguier Frontières, 1993.
  31. NIST. Standard Reference Database 78. https://dx.doi.org/10.18434/T4W30F
  32. J.J. Camacho, M. Santos, L. Diaz, J.M.L. Poyato. J. Phys. D. 2018. V. 41. № 21. P. 215206. https://doi.org/10.1088/0022-3727/41/21/215206
  33. R. Pierce, A. Geydon. The identification of molecular spectra. London: Chapman & Hall Ltd., 1941.
  34. LIFBASE. Database and spectral simulation for diatomic molecules (v. 1.6). https://www.sri.com/platform/lifbase-spectroscopy-tool/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Functional diagram of the experimental setup: 1 - glass neutral light filters, 2 - transparent glass plate, 3 - rotating mirror, 4 - lens, 5 - sample, 6 - lens, 7 - slit (0.1 × 3 mm), 8 - lens, 9 - lens, 10 - oscilloscope, 11 - light guide, PMT - photomultiplier, F - photodiode, BS - synchronization unit, SM - spectrometer, P - polychromator, ФХ - photochronograph, СФХ - spectrophotochronograph, L - laser, K - computer; I - first channel, II - second channel, III - third channel.

Download (426KB)
3. Fig. 2. Typical luminescence oscillograms arising during ignition of anthracite samples: a – Hcr = 0.2 J/cm2; b – Hcr = 2.5 J/cm2. The dashed line in Fig. 2a shows the laser pulse.

Download (135KB)
4. Fig. 3. Dependence of the probability of the appearance of glow of anthracite samples (p) on the energy density of laser pulses: 1 – the first type of glow (Fig. 2a), Hcr(1) = (0.15 ± 0.03) J/cm2; 2 – the second type of glow (Fig. 2b), Hcr(2) = (2.20 ± 0.02) J/cm2.

Download (52KB)
5. Fig. 4. Dependence of the luminescence amplitude I of anthracite samples on the energy density at the end of the laser pulse. The dashed curve is constructed using formula (4) with the parameter values ​​A = 720 rel. units and H0 = 1.5 J/cm2.

Download (63KB)
6. Fig. 5. Glow spectra of anthracite samples (a) and the second type (b), the first type corresponding to the moments of time t = 40 ns and 30 μs from the beginning of the laser pulse.

Download (118KB)
7. Fig. 6. Glow spectrum of anthracite in the range of λ = 200–860 nm exposed to laser radiation with λ = 532 nm, pulse duration of 10 ns and power density W = 0.5 GW/cm2: a – range of 200–300 nm, lines of C, C+, C2+, Al, and OH (A2∑+ – X 2П) glow bands are observed; b – range of 330–450 nm, bands of CN (B2∑+ – X 2∑+), CH (A2∑+ – X 2П) and Ca+ lines are observed; c – range of 450–600 nm, glow bands of C2 (e3Пg – a 3Пu) are observed; d – range of 600–860 nm, glow lines of Fe and Fe+ are observed.

Download (270KB)

Copyright (c) 2025 Russian Academy of Sciences