Method of splitting polarization coordinates for description of ultrafast multistage electron transfer in a non-debye medium

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for constructing the space of medium states in reactions of ultrafast multistage intramolecular electron transfer in media with several relaxation times is developed. The method uses the splitting of polarization coordinates into relaxation components, and is a generalization of two previously developed approaches used (1) to describe multistage reactions, and (2) to consider multicomponent relaxation. Within the suggested generalized scheme, a model of charge transfer in a three-center molecular system in the environment with a two-component relaxation function is considered, an algorithm for constructing the diabatic free energy surfaces of electronic states is described, a system of equations for the evolution of the distribution functions is written. The results of the general model are shown to reproduce well-known solutions in particular cases.

全文:

受限制的访问

作者简介

S. Feskov

Volgograd State University

编辑信件的主要联系方式.
Email: serguei.feskov@volsu.ru
俄罗斯联邦, Volgograd

参考

  1. Kuznetsov A.M., Ulstrup J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory. Wiley, 1999.
  2. Blumberger J. // Chem. Rev. 2015. V. 115. No. 20. P. 11191. https://doi.org/10.1021/acs.chemrev.5b00298
  3. Fukuzumi S. Electron Transfer: Mechanisms and Applications. Wiley-VCH Verlag, 2020. https://doi.org/10.1002/9783527651771
  4. Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
  5. Zusman L.D. // Chem. Phys. 1980. V. 49. № 2. P. 295. https://doi.org/10.1016/0301-0104(80)85267-0
  6. Barzykin A.V., Frantsuzov P.A., Seki K. et al // Adv. Chem. Phys. 2002. V. 123. P. 511. https://doi.org/ 10.1002/0471231509.ch9
  7. Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer: Theory and Applications. Wiley, 2018.
  8. Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C 2016 V. 29. P. 48. https://doi.org/10.1016/j.jphotochemrev.2016.11.001
  9. Cho M., Silbey R.J. // J. Chem. Phys. 1995. V. 103. P. 595. https://doi.org/10.1063/1.470094
  10. Najbar J., Tachiya M. // J. Photochem. Photobiol. 1996. V. 95. P. 51. https://doi.org/10.1016/1010-6030(95)04232-6
  11. Khokhlova S.S., Mikhailova V.A., Ivanov A.I. // J. Chem. Phys. 2006. V. 124. P. 114507. https://doi.org/10.1063/1.2178810
  12. Newton M.D. // Isr. J. Chem. 2004. V. 44. P. 83. https://doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
  13. Hilczer M., Tachiya M. // J. Phys. Chem. 1996. V. 100. P. 8815. https://doi.org/10.1021/jp953213x
  14. Motylewski T., Najbar J., Tachiya M. // Chem. Phys. 1996. V. 212. P. 193. https://doi.org/10.1016/S0301-0104(96)00175-9
  15. Tang J., Norris J.R. // J. Chem. Phys. 1994. V. 101. P. 5615. https://doi.org/10.1063/1.467348
  16. Feskov S.V., Ivanov A.I. // Chem. Phys. 2016. V. 478. P. 164. https://doi.org/10.1016/j.chemphys.2016.03.013
  17. Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. A. 2016. V. 90. № 1. P. 144. https://doi.org/10.1134/S0036024416010106
  18. Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
  19. Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C 2018. V. 122. P. 25247. https://doi.org/10.1021/acs.jpcc.8b09097
  20. Feskov S.V., Ivanov A.I. // J. Chem. Phys. 2018. V. 148. P. 104107. https://doi.org/10.1063/1.5016438
  21. Wallin S., Monnereau C., Blart E. et al // J. Phys. Chem. A 2010. V. 114. P. 1709. https://doi.org/10.1021/jp907824d
  22. Robotham B., Lastman K.A., Langford S.J. et al // J. Photochem. Photobiol. A 2013. V. 251. P. 167. https://doi.org/10.1016/j.jphotochem.2012.11.002
  23. LeBard D. N., Martin D. R., Lin S. et al // Chem. Sci. 2013. V. 4. P. 4127. https://doi.org/10.1039/C3SC51327K
  24. Savintseva L.A., Avdoshina A.A., Ignatov S.K. // Russ. J. Phys. Chem. B. 2022. V. 16. No. 3. P. 445. https://doi.org/10.1134/S1990793122030216
  25. Zusman L.D. // Chem. Phys. 1988. V. 119. P. 51. https://doi.org/10.1016/0301-0104(88)80005-3
  26. Feskov S.V., Yudanov V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. No. 9. P. 1816. https://doi.org/10.1134/S0036024417090102
  27. Gromov S.P., Chibisov A.K., Alfimov M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 219. https://doi.org/10.1134/S1990793121020202
  28. Ostrovsky M.A., Nadtochenko V.A. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 344. https://doi.org/10.1134/S1990793121020226
  29. Gaydamaka S.N., Gladchenko M.A., Murygina V.P. // Russ. J. Phys. Chem. B. 2020. V. 14. No. 1. P. 160. https://doi.org/10.1134/S1990793120010200
  30. Jimenez R., Fleming G.R., Kumar P.V. et al // Nature. 1994. V. 369. P. 471. https://doi.org/10.1038/369471a0
  31. Maroncelli M., Kumar V.P., Papazyan A. // J. Phys. Chem. 1993. V. 97. P. 13. https://doi.org/10.1021/j100103a004
  32. Nazarov A.E., Ivanov A.I., Rosspeintner A. et al // J. Mol. Liq. 2022. V. 360. P. 119387. https://doi.org/10.1016/j.molliq.2022.119387
  33. Ivanov A.I., Maigurov A. // Khim. Fiz. 2003. V. 77. P. 297 [in Russian].

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. a - Free energy surfaces G of electronic states of a three-center system | φ 1 〉 = D*A1A2, | φ 2 〉 = D+A1–A2 and | φ 3 〉 = D+A1A2– in the space of polarization coordinates Q1 and Q2. obtained by orthogonal projection from the extended space q into the subspace Q, the values ​​of the model parameters are indicated in the text; b — location of the PSE minimum points on the plane (Q1, Q2). The displacement vectors Dnn′ and the angle q, which determines the correlation between electronic transitions, are indicated | φ 1 〉 → | φ 2 〉 and | φ 1 〉 → | φ 3〉.

下载 (420KB)
3. Fig. 2. a — Free energy surfaces G of the system in the subspace of relaxation coordinates R, obtained by orthogonal projection from the space q. The values ​​of the model parameters are the same as in Fig. 1. The values ​​of the weighting coefficients x1 and x2 correspond to acetonitrile (indicated in the text). b - Location of minimum PSE points on the plane (R1, R2) - along a straight line specified by the equation R2 / R1 = x2 / x1.

下载 (406KB)

版权所有 © Russian Academy of Sciences, 2024