Method of splitting polarization coordinates for description of ultrafast multistage electron transfer in a non-debye medium
- 作者: Feskov S.V.1
-
隶属关系:
- Volgograd State University
- 期: 卷 43, 编号 1 (2024)
- 页面: 3-12
- 栏目: Элементарные физико-химические процессы
- URL: https://cardiosomatics.orscience.ru/0207-401X/article/view/674993
- DOI: https://doi.org/10.31857/S0207401X24010017
- EDN: https://elibrary.ru/mlxatu
- ID: 674993
如何引用文章
详细
A method for constructing the space of medium states in reactions of ultrafast multistage intramolecular electron transfer in media with several relaxation times is developed. The method uses the splitting of polarization coordinates into relaxation components, and is a generalization of two previously developed approaches used (1) to describe multistage reactions, and (2) to consider multicomponent relaxation. Within the suggested generalized scheme, a model of charge transfer in a three-center molecular system in the environment with a two-component relaxation function is considered, an algorithm for constructing the diabatic free energy surfaces of electronic states is described, a system of equations for the evolution of the distribution functions is written. The results of the general model are shown to reproduce well-known solutions in particular cases.
全文:

作者简介
S. Feskov
Volgograd State University
编辑信件的主要联系方式.
Email: serguei.feskov@volsu.ru
俄罗斯联邦, Volgograd
参考
- Kuznetsov A.M., Ulstrup J. Electron Transfer in Chemistry and Biology: An Introduction to the Theory. Wiley, 1999.
- Blumberger J. // Chem. Rev. 2015. V. 115. No. 20. P. 11191. https://doi.org/10.1021/acs.chemrev.5b00298
- Fukuzumi S. Electron Transfer: Mechanisms and Applications. Wiley-VCH Verlag, 2020. https://doi.org/10.1002/9783527651771
- Marcus R.A. // J. Chem. Phys. 1956. V. 24. P. 966. https://doi.org/10.1063/1.1742723
- Zusman L.D. // Chem. Phys. 1980. V. 49. № 2. P. 295. https://doi.org/10.1016/0301-0104(80)85267-0
- Barzykin A.V., Frantsuzov P.A., Seki K. et al // Adv. Chem. Phys. 2002. V. 123. P. 511. https://doi.org/ 10.1002/0471231509.ch9
- Misra R., Bhattacharyya S.P. Intramolecular Charge Transfer: Theory and Applications. Wiley, 2018.
- Feskov S.V., Mikhailova V.A., Ivanov A.I. // J. Photochem. Photobiol. C 2016 V. 29. P. 48. https://doi.org/10.1016/j.jphotochemrev.2016.11.001
- Cho M., Silbey R.J. // J. Chem. Phys. 1995. V. 103. P. 595. https://doi.org/10.1063/1.470094
- Najbar J., Tachiya M. // J. Photochem. Photobiol. 1996. V. 95. P. 51. https://doi.org/10.1016/1010-6030(95)04232-6
- Khokhlova S.S., Mikhailova V.A., Ivanov A.I. // J. Chem. Phys. 2006. V. 124. P. 114507. https://doi.org/10.1063/1.2178810
- Newton M.D. // Isr. J. Chem. 2004. V. 44. P. 83. https://doi.org/10.1560/LQ06-T9HQ-MTLM-2VC1
- Hilczer M., Tachiya M. // J. Phys. Chem. 1996. V. 100. P. 8815. https://doi.org/10.1021/jp953213x
- Motylewski T., Najbar J., Tachiya M. // Chem. Phys. 1996. V. 212. P. 193. https://doi.org/10.1016/S0301-0104(96)00175-9
- Tang J., Norris J.R. // J. Chem. Phys. 1994. V. 101. P. 5615. https://doi.org/10.1063/1.467348
- Feskov S.V., Ivanov A.I. // Chem. Phys. 2016. V. 478. P. 164. https://doi.org/10.1016/j.chemphys.2016.03.013
- Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. A. 2016. V. 90. № 1. P. 144. https://doi.org/10.1134/S0036024416010106
- Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
- Mikhailova T.V., Mikhailova V.A., Ivanov A.I. // J. Phys. Chem. C 2018. V. 122. P. 25247. https://doi.org/10.1021/acs.jpcc.8b09097
- Feskov S.V., Ivanov A.I. // J. Chem. Phys. 2018. V. 148. P. 104107. https://doi.org/10.1063/1.5016438
- Wallin S., Monnereau C., Blart E. et al // J. Phys. Chem. A 2010. V. 114. P. 1709. https://doi.org/10.1021/jp907824d
- Robotham B., Lastman K.A., Langford S.J. et al // J. Photochem. Photobiol. A 2013. V. 251. P. 167. https://doi.org/10.1016/j.jphotochem.2012.11.002
- LeBard D. N., Martin D. R., Lin S. et al // Chem. Sci. 2013. V. 4. P. 4127. https://doi.org/10.1039/C3SC51327K
- Savintseva L.A., Avdoshina A.A., Ignatov S.K. // Russ. J. Phys. Chem. B. 2022. V. 16. No. 3. P. 445. https://doi.org/10.1134/S1990793122030216
- Zusman L.D. // Chem. Phys. 1988. V. 119. P. 51. https://doi.org/10.1016/0301-0104(88)80005-3
- Feskov S.V., Yudanov V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. No. 9. P. 1816. https://doi.org/10.1134/S0036024417090102
- Gromov S.P., Chibisov A.K., Alfimov M.V. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 219. https://doi.org/10.1134/S1990793121020202
- Ostrovsky M.A., Nadtochenko V.A. // Russ. J. Phys. Chem. B. 2021. V. 15. No. 2. P. 344. https://doi.org/10.1134/S1990793121020226
- Gaydamaka S.N., Gladchenko M.A., Murygina V.P. // Russ. J. Phys. Chem. B. 2020. V. 14. No. 1. P. 160. https://doi.org/10.1134/S1990793120010200
- Jimenez R., Fleming G.R., Kumar P.V. et al // Nature. 1994. V. 369. P. 471. https://doi.org/10.1038/369471a0
- Maroncelli M., Kumar V.P., Papazyan A. // J. Phys. Chem. 1993. V. 97. P. 13. https://doi.org/10.1021/j100103a004
- Nazarov A.E., Ivanov A.I., Rosspeintner A. et al // J. Mol. Liq. 2022. V. 360. P. 119387. https://doi.org/10.1016/j.molliq.2022.119387
- Ivanov A.I., Maigurov A. // Khim. Fiz. 2003. V. 77. P. 297 [in Russian].
补充文件
