The Initiation Mechanism of the Isoolefin Oligomerization Reaction in the Presence of Ethylaluminum Dichloride – Protonodonor Complex Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The mechanism of isoolefins initiation in the presence of ethylaluminum dichloride – proton donor (water, phenol, hydrochloric acid) complex catalysts has been studied by ab initio HF.3.21G. The energetics of these reactions was estimated, the values of its activation energy and thermal effects were obtained. It was found that among the studied catalysts, an increase in the activation energy of the reaction of initiation of oligomerization of isoolefins contributes to an increase in the selectivity of the process.

Full Text

Restricted Access

About the authors

G. E. Zaikov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: chembio@sky.chph.ras.ru
Russian Federation, Moscow

M. I. Artsis

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Author for correspondence.
Email: chembio@sky.chph.ras.ru
Russian Federation, Moscow

V. A. Babkin

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Mikhailovka

D. S. Andreev

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Mikhailovka

A. V. Ignatov

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Mikhailovka

D. S. Zakharov

Sebryakovo Branch of the Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Mikhailovka

V. V. Vovko

Volgograd State Technical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Volgograd

V. S. Belousova

Sechenov First Moscow State Medical University

Email: chembio@sky.chph.ras.ru
Russian Federation, Moscow

References

  1. Zaikov G.E., Artsis M.I., Andreev D.S., Ignatov A.V. // Russian Journal of Physical Chemistry B. 2022. V. 16. № 4. P. 606–614.
  2. Babkin V.A., Zaikov G.E., Minsker K.S. // Ufa: Gilem Publ., 1996. 182 p.
  3. Kol’tsov N. I. // Russian Journal of Physical Chemistry B. 2020. V. 14. № 5. P. 765–772. https://doi.org/10.1134/S1990793120050061.
  4. Tereza A.M., Agafonov G.L., Anderzhanov E.K., Medvedev S.P., Khomik S.V., Petrov S.K., Chernyshov M.V. // Russian Journal of Physical Chemistry B. 2020. V. 14. № 4. P. 654–659. https://doi.org/10.1134/S1990793120040247.
  5. Tarasov D.N., Tiger R.P. // Russian Journal of Physical Chemistry B. 2019. V. 13. No 3. P. 478–485. https://doi.org/10.1134/S1990793119030138.
  6. Volokhov V.M., Zyubina T.S., Volokhov A.V., Amosova E.S., Varlamov D.A., Lempert D.B., Yanovskii L.S. // Russian Journal of Physical Chemistry B. 2021. V. 15. № 1. P. 12–24. https://doi.org/10.1134/S1990793121010127
  7. Tsirelson V.G. // Moscow: Binom, 2010. 422 p.
  8. Babkin V.A., Andreev D.S., Ignatov A.V., Lisina L.M., Belousova V.S., Fomichev V.T., Prochukhan K.Yu., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2019. V. 42. № 1. P. 56–62.
  9. Babkin V.A., Andreev D.S., Ignatov A.V., Belousova V.S., Fomichev V.T., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2020. V. 43. № 1. P. 24–30.
  10. Babkin V.A., Andreev D.S., Ignatov A.V., Belousova V.S., Fomichev V.T., Akchurin T.K., Artsis M.I., Zaikov G.E. // Oxidation Communications. 2020. V. 43. № 2. P. 171–176.
  11. Granovsky A.A. 2013. http://classic.chem.msu.su/gran/firefly/index.html
  12. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. // J.Comput.Chem. 1993. V. 14. P. 1347–1363.
  13. Bode B.M., Gordon M.S. // Journal of Molecular Graphics. 1998. No. 16. P. 133–138.
  14. Pasynkiewicz S., Boleslawski M., Sadownik A. // Journal of Organometallic Chemistry. 1976. V. 113. № 4. P. 303–309.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of the initial model of AlCl2C2H5-water (Cα) complex catalyst with 2,3,3-trimethylbutene-1.

Download (115KB)
3. Fig. 2. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2C2H5-water (Cα) with 2,3,3-trimethylbutene-1 (AC).

Download (95KB)
4. Fig. 3. Variation of total energy (ΔE) along the reaction coordinate of the interaction reaction of the complex catalyst AlCl2C2H5-water (Cα) with 2,3,3-trimethylbutene-1.

Download (76KB)
5. Fig. 4. Structure of the initial model of AlCl2C2H5-phenol (Cα) complex catalyst with 2,3,3-trimethylbutene-1.

Download (134KB)
6. Fig. 5. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2C2H5-phenol (Cα) with 2,3,3-trimethylbutene-1 (AC).

Download (144KB)
7. Fig. 6. Variation of total energy (ΔE) along the reaction coordinate of the interaction reaction of the complex catalyst AlCl2C2C2H5-phenol (Cα) with 2,3,3-trimethylbutene-1.

Download (72KB)
8. Fig. 7. Structure of the initial model of the complex catalyst of AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1.

Download (119KB)
9. Fig. 8. Final atomic-molecular structure of the interaction of the complex catalyst AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1 (AC).

Download (108KB)
10. Fig. 9. Variation of the total energy (E) along the coordinate of the reaction of the interaction of the complex catalyst AlCl2C2H5-hydrochloric acid (Cα) with 2,3,3-trimethylbutene-1.

Download (80KB)

Copyright (c) 2024 Russian Academy of Sciences