Oxidation of benzene to phenol by nitrous oxide over Me-ZSM-5-zeolites with a low concentration of active sites. Role of single active sites

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The ZSM-5 zeolites with Si/Al ratio 50 and 80 (ZSM-5-50 и ZSM-5-80) modified by Ca-, Sr-, Cr-, Mn- и Sb-ions were synthesized and investigated in oxidation of benzene to phenol. It was shown that more active and selective in direct oxidation of benzene by nitrous oxide are catalysts containing about 0.1–0.2% of Sb. It formally corresponds to substitution of 1/12 and 1/6 ions of H-ions by Sb-ions in ratio 1 : 1 of zeolite. Yield of phenol equal to 61.2% was obtained at 450°C and contact time 1 sec. with selectivity to phenol 96% in the presence of (ZSM-5-50 + 1/12 Sb) sample. It is about twice as much than an average value of yield reported in literature for other Me-ZSM-5 catalysts. Also, (ZSM-5-50 + 1/6 Sb) sample revealed much higher stability than other catalysts based on ZSM-5 zeolites. A model of nitrous oxide activation over single active sites (located very distant from each other) of the catalyst is suggested. The suggested model of single site adsorption and catalysis allows explain more higher efficiency of nitrous oxide as oxidant than that of molecular oxygen in reaction of direct oxidation of benzene to phenol, especially over catalysts with a low concentration (less than 0.1%) of |Me-ions.

Texto integral

Acesso é fechado

Sobre autores

V. Korchak

Semenov Federal Research Center for Chemical Physics

Autor responsável pela correspondência
Email: korchak@chph.ras.ru
Rússia, Moscow

A. Kuli-zade

Lomonosov Moscow State University

Email: korchak@chph.ras.ru
Rússia, Moscow

O. Silchenkova

Semenov Federal Research Center for Chemical Physics

Email: korchak@chph.ras.ru
Rússia, Moscow

O. Udalova

Semenov Federal Research Center for Chemical Physics

Email: korchak@chph.ras.ru
Rússia, Moscow

Bibliografia

  1. Yu. A. Bruk, Kumol’nii sposob poluchenia fenola I acetona. L.: Khimia (1983).
  2. V. M. Zakoshanskii, Ros. Khim. Zh. LII, 53 (2008).
  3. M. Iwamoto, J. Hirata, K. Matsukami, S. Kagawa, J. Phys. Chem. 87, 903 (1983). https://doi.org/10.1021/j100229a001
  4. E. Suzuki, K. Nakashiro, Y. Ono, Chem. Lett. 17, 953 (1988). https://doi.org/10.1246/cl.1988.953
  5. G. I. Panov, V. I. Sobolev, A. S. Kharitonov, J. Molec. Catal. 61, 85 (1990). https://doi.org/10.1016/0304-5102(90)85197-P
  6. V. I. Sobolev, G. I. Panov, A. S. Kharitonov, et al., J. Catal. 139, 435 (1993). https://doi.org/10.1006/jcat.1993.1038
  7. A. S. Kharitonov, G. I. Panov, V. I. Sobolev, et al., Appl. Catal. A 82, 31 (1992). https://doi.org/10.1016/0926-860X(92)80003-U
  8. G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A. Vostrikova, Appl. Catal. A 82, 31 (1992). https://doi:org/10.1016/0926-860X(92)80003-U
  9. A. S. Kharitonov, V. I. Sobolev, G. I. Panov, Russ. Chem. Rev. 61, 1130 (1992).
  10. O. V. Udalova, M. Ya. Bykhovskii, M. D. Shibanova, et al., Nauka i Tekhnologia Uglevodorodov № 6, 60 (2001).
  11. O. V. Udalova, A. A. Firsova, M.D.Shibanova, et al., Nauka i Tekhnologia Uglevodorodov № 1, 23 (2002).
  12. V. N. Korchak, O. V. Udalova, M. D. Shibanova, et al., Sposob okislenia benzola v fenol, Patent R.F. № 2184722 (2001) // B.I. 2002. № 19.
  13. A.Y. Kucherov, A.A. Slinkin, Russ. Chem. Rev. 61, 925 (1992).
  14. A. A. Ivanov, V. S. Chernyavsky, M. I. Gross, et al., Appl. Catal. A 249, 327 (2003).
  15. V. S. Chernyavsky, I. V. Pirutko, A. K. Uriarte, et al., J. Catal. 245, 466 (2007).
  16. I. V. Pirutko, V. S. Chernyavsky, E. V. Starokon, et al., Appl. Catal. B: Env. 91, 174 (2009).
  17. L. Kustov, A. Tarasov, V. Bogdan, A. Tyrlov, Fulmer J. Catal. Today 61, 123 (2000). https://doi.org/10.1016/S0920-5861(00)00354-0
  18. A. L. Tarasov, L. M. Kustov, A. A. Tyrlov, et al., Proc. 4 th World Congress on Oxidation Catalysis. Potsdam, Germany P. 151 (2001).
  19. L. M. Kustov, A. L. Tarasov, A. M. Kuli-zade, A. A. Tyrlov, Proc. 4 th World Congress on Oxidation Catalysis. Potsdam, Germany P. 153 (2001).
  20. L. M. Kustov, A. L. Tarasov, A. L. Kustov, Russ. J. Phys. Chem. A 95, 9 1798 (2021). https://doi.org/10.1134/S0036024421090119
  21. Cui Ouvang, Yingxia Li, Jianwei LI, Catalysts 9, 44 (2019). https://doi.org/10.3390/catal9010044
  22. С. M. Fu, V. N. Korchak, Hall W.Keith, J. Catal. 68, 166 (1981). https://doi.org/10.1016/0021-9517(81)90049-X
  23. E. R. S.Winter, J. Catal. 34, 431 (1974). https://doi.org/10.1016/0021-9517(74)90056-6
  24. B. G. Reuben, J. W. Linnett, Trans. Faraday Soc. 55, 1543 (1959).
  25. B. R. Wood, J. A. Reiner, A. T. Bell, et al., J. Catal. 2004. 224, 148 (2004). https://doi.org/10.1016/j.jcat.2004.02.025
  26. A. L. Yakovlev, G. M. Zhidomirov, R. A.van Santen, Catal. Lett. 75, 45 (2001).
  27. D. A. Bulushev, L. Kiwi-Minsker, A. Renken, J. Catal. 2004. 222, 389 (2004). https://doi.org/10.1016/j.jcat.2003.11.012
  28. V. P. Zhdanov, Surface Rev. Lett. 16, 757 (2009). https://doi.org/10.1142/S0218625X09013116
  29. J. A. Ryder, A. K. Chakroborty, A. T. Bell, J. Phys. Chem. B 106, 7059 (2002). https://doi.org/10.1021/jp014705e
  30. J. A. Ryder, A. K. Chakroborty, A. T. Bell, J. Catal. 220, 84 (2003). https://doi.org/10.1016/S0021-9517(03)00275-6
  31. N. V. Dokhlikova, S. A. Ozerin, S. V. Doronin, et al., Russ. J. Phys. Chem. B 16, 461 (2022). https://doi.org/10.1134/S1990793122030137
  32. N. V. Dokhlikova, A. K. Gatin, S. Y.Sarvadi, et al., Russ. J. Phys. Chem B 16, 772 (2022). https://doi.org/10.1134/S1990793122040042
  33. M. V. Grishin, A. K. Gatin, S. Y. Sarvadi, et al., Russ. J. Phys. Chem. B 14, 697 (2020). https://doi.org/10.1134/S1990793120040065
  34. N. V. Dokhlikova, A. K. Gatin, S. Y. Sarvadi, et al., Russ. J. Phys. Chem. B 15, 732 (2021). https://doi.org/10.1134/S1990793121040023

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024