Multimodel study of the influence of atmospheric waves from a tropospheric source on the ionosphere during a geomagnetic storm on may 27–29, 2017

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of atmospheric waves generated by a tropospheric convective source on the state of the upper atmosphere and ionosphere during the recovery phase of the geomagnetic storm on May 27–28, 2017 was studied. A new approach to accounting for atmospheric waves generated by tropospheric convective sources in large-scale atmospheric models without using wave parameterization is proposed and implemented. The developed approach makes it possible to comprehensively study the effects generated by atmospheric waves against the background of various geophysical events, including geomagnetic storms. The multimodel study has shown that the proposed approach allows us to reproduce perturbations of the critical frequency ionosphere F₂ layer caused by the propagation of atmospheric waves generated by a tropospheric meteorological source. It is shown that the inclusion of a heat inflow source simulating the propagation of atmospheric waves from the lower atmosphere in the global model enhances the effects of a geomagnetic storm, which manifests itself as an additional decrease in the critical frequency of the F₂ layer, which can reach 7 % of absolute values.

Texto integral

Acesso é fechado

Sobre autores

Y. Kurdyaeva

Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences

Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

F. Bessarab

Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences

Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

O. Borchevkina

Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

M. Klimenko

Institute of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Kaliningrad Branch, Russian Academy of Sciences

Email: olga.borchevkina@mail.ru
Rússia, Kaliningrad

Bibliografia

  1. Kuverova V.V., Adamson S.O., Berlin A.A. et al. // Adv. Space Res. 2019. V. 64. P. 1876; https://doi.org/10.1016/j.asr.2019.05.041
  2. Golubkov G.V., Adamson S.O., Borchevkina O.P. et al. // Russ. J. Phys. Chem. 2022. V. 16. P. 508; https://doi.org/10.1134/S1990793122030058
  3. Bakhmetieva N.V., Grigoriev G.I., Kalinina E.E. // Russ. J. Phys. Chem. B 2023. V. 17. P. 495–502; https://doi.org/10.1134/S1990793123020215
  4. Bakhmetieva N.V., Zhemyakov I.N. // Russ. J. Phys. Chem. B 2022. V. 16. P. 990; https://doi.org/10.1134/S1990793122050177
  5. Forbes J.M., Palo S.E., Zhang X., Atmos J. // Sol.-Terr. Phys. 2000. V. 62. P. 685; https://doi.org/10.1016/S1364-6826(00)00029-8
  6. Karpov I.V., Karpov M.I., Borchevkina O.P. // Russ. J. Phys. Chem. B 2019. V. 13. P. 714; https://doi.org/10.1134/S1990793119040067
  7. Ratovsky K.G., Yasyukevich Y.V., Vesnin A.M. et al. // Russ. J. Phys. Chem. 2020. V. 14. P. 862; https://doi.org/10.1134/S1990793120050243
  8. Fuller-Rowell T., Wu F., Akmaev R. et al. // J. Geophys. Res. 2010. V. 115. № A00G08. P. 1; https://doi.org/10.1029/2010JA015524
  9. Goncharenko L., Chau J.L., Condor P. et al. // Geophys. Res. Lett. 2013. V. 40. P. 4982; https://doi.org/10.1002/grl.50980.
  10. Yasyukevich A.S., Padokhin A.M., Mylnikova A.A. et al. // Memoirs of the Faculty of Physics. 2018. № 3. P. 1830901.
  11. Snively J., Pasko V. // Geophys. Res. Lett. 2003. V. 30. № 24. P. 303; https://doi.org/10.1029/2003GL018436
  12. Perevalova N.P., Polyakova A.S., Pogoreltsev A.I. // Geomagn. aeronom. 2013. V. 53. P. 397; https://doi.org/10.1134/S0016793213030146
  13. Gavrilov N.M., Koval A.V., Pogoreltsev A.I., Savenkova E.N. // Geomagn. aeronom. 2014. V. 54. P. 381; https://doi.org/10.1134/S0016793214030050
  14. Fovell R., Durran D., Holton J.R. // J. Atmos. Sci. 1992. V. 49. № 16. P. 1427; https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2
  15. Lindzen R.S., Holton J.R. // J. Atmos. Sci. 1968. V. 25. P. 1095; https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
  16. Alexander M.J., Dunkerton T.J. // J. Atmos. Sci. 1999. V. 56. № 24. P. 4167; https://doi.org/10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2
  17. Hines C.O. // J. Atmos. Sol.-Terr. Phys. 1997. V. 59. P. 371; https://doi.org/10.1016/S1364-6826(96)00079-X
  18. Meraner K., Schmidt H., Manzini E. et al. // J. Geophys. Res. 2016. V. 121. P. 12045; https://doi.org/10.1002/2016JD025012
  19. Costantino L., Heinrich P., Mzé N., Hauchecorne A. // Ann. Geophys. 2015. V. 33. P. 1155; https://doi.org/10.5194/angeo-33-1155-2015
  20. Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. // Atmosphere. 2021. V. 12 (11). P. 1384; https://doi.org/10.3390/atmos12111384
  21. Gavrilov N.M., Kshevetskii S.P. // Earth, Planets, Space. 2014. V. 66. P. 88; https://doi.org/10.1186/1880-5981-66-88
  22. Meng X., Komjathy A., Verkhoglyadova O.P. et al. // Geophys. Res. Lett. 2020. V. 42. P. 4736; https://doi.org/10.1002/2015GL064610
  23. Yamashita C., Liu H.-L., Chu X. // Geophys. Res. Lett. 2010. V. 37. P. L09803; https://doi.org/10.1029/2009GL042351
  24. Becker E., Vadas S.L. // J. Geophys. Res. Space Physics. 2020. V. 125. P. e2020JA028034; https://doi.org/10.1029/2020JA028034
  25. Kurdyaeva Y.A., Kshevetskii S.P., Gavrilov N.M., Golikova E.V. // Numerical Analysis and Applications. 2017. V. 10. P. 324; https://doi.org/10.1134/S1995423917040048
  26. Kshevetskii S.P. // Comput. Math. Math. Phys. 2001. V. 41. P. 273.
  27. Kshevetskii S.P. // Comput. Math. Math. Phys. 2002. V. 42. P. 1510.
  28. Kshevetskii S.P. // Nonlinear Process. Geophys. 2001. V. 8. P. 37; https://doi.org/10.5194/npg-8-37-2001
  29. Picone J.M., Hedin A.E., Drob D.P. // J. Geophys. Res. 2002. V. A12. P. 1468; https://doi.org/10.1029/2002JA009430
  30. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V. et al. // PAGEOPH. 1988. V. 127. P. 219; https://doi.org/10.1007/BF00879812
  31. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V. et al. // J. Atmos. Sol.-Terr. Phys. 1991. V. 53. P. 1113; https://doi.org/10.1016/0021-9169(91)90060-K
  32. Klimenko M.V., Bryukhanov V.V., Klimenko V.V. // Geomagn. aeronom. 2006. V. 46. P. 457; https://doi.org/10.1134/S0016793206040074
  33. Bessarab F.S., Korenkov Yu.N., Klimenko M.V. et al. // J. Atmos. Sol.-Terr. Phys. 2012. V. 90–91. P. 77; https://doi.org/10.1016/j.jastp.2012.09.005
  34. Klimenko M.V., Klimenko V.V., Zakharenkova E. et al. // Earth, Planets, Space. 2012. V. 64. P. 441; https://doi.org/10.5047/eps.2011.07.004
  35. Karpov I.V., Bessarab F.S., Korenkov Y.N., Klimenko V.V., Klimenko M.V. // Russ. J. Phys. Chem. B 2016. V. 16. P. 117; https://doi.org/10.1134/S1990793116010048
  36. Kshevetskii S.Р., Kurdyaeva Y.А., Gavrilov N.М. // Izvestiya, Atmospheric and Oceanic Physics. 2022. V. 58. P. 30; https://doi.org/10.31857/S0002351523010078
  37. Gavrilov N.M. // Izvestiya of the Academy of Sciences of the USSR. Atmospheric and Oceanic Physics. 1974. V. 10. P. 83.
  38. Kurdyaeva Y.A., Borchevkina O.P., Golikova E.V., Karpov I.V. // Bulletin of the Russian Academy of Sciences: Physics.2024. V. 88.
  39. Nigussie M., Moldwin M., Yizengaw E. // Atmosphere. 2022. V. 13. P. 1414; https://doi.org/10.3390/atmos13091414
  40. John S.R., Kumar K.K. // Clim. Dyn. 2012. V. 39. P. 1489; https://doi.org/10.1007/s00382-012-1329-9
  41. Hindley N.P., Wright C.J., Smith N.D. et al. // Atmos. Chem. Phys. 2015. V. 15. P. 7797; https://doi.org/10.5194/acp-15-7797-2015
  42. Karpov I.V., Borchevkina O.P., Vasilev P.A. // Russ. J. Phys. Chem. B 2020. V. 14. P. 362; https://doi.org/10.1134/S1990793120020220
  43. Sori T., Shinbori A., Otsuka Y. et al. // J. Geophys. Res. Space Phys. 2023. V. 128. P. e2022JA031157; https://doi.org/10.1029/2022JA031157
  44. Kotova D.S., Zakharenkova I.E., Klimenko M.V. et al. // Russ. J. Phys. Chem. B 2020. V. 14. P. 377; https://doi.org/10.1134/S1990793120020232
  45. Ratovsky K.G., Yasyukevich Y.V., Vesnin A.M. et al. // Atmosphere. 2020. V. 11. P. 1; https://doi.org/10.3390/atmos11121308
  46. Pirog O.M., Polekh N.M., Tashchilin A.V. et al. // Adv. Space Res. 2006. V. 37. P. 1081; https://doi.org/10.1016/j.asr.2006.02.005
  47. Mayr H.G., Harris I., Spencer N.W. // Rev. Geophys. 1978. V. 16. P. 539; https://doi.org/10.1029/RG016i004p₀0539
  48. Ratovsky K.G., Klimenko M.V., Klimenko V.V. et al. // Sol.-Terr. Phys. 2018. V. 4. P. 26; https://doi.org/10.12737/stp-44201804
  49. Foster J.C. // J. Geophys. Res. 1993. V. 98. P. 1675; https://doi.org/10.1029/92JA02032
  50. Lu G., Richmond A.D., Roble R.G., Emery B.A. // J. Geophys. Res. 2001. V. 106. P. 24493; https://doi.org/10.1029/2001JA000003
  51. Borchevkina O.P., Karpov I.V. // Geomagn. Aeronom. 2017. V. 57. P. 624; https://doi.org/10.1134/S0016793217040041
  52. Polyakova A.S., Perevalova N.P. // Adv. Space Res. 2011. V. 48. P. 1196; https://doi.org/10.1016/j.asr.2011.06.014
  53. Bondur V.G., Pulinets S.A. // Issledovaniya zemli iz kosmosa. 2012. V. 3. P. 3.
  54. Rishbeth H., Mendillo M. // J. Atmos. Sol.-Terr. Phys. 2001. V. 63. P. 1661; https://doi.org/10.1016/S1364-6826(01)00036-0.
  55. Forbes J.M., Zhang X., Talaat E.R. et al. // J. Geophys. Res. 2003. V. 108. P. 1033; https://doi.org/10.1029/2002JA009262
  56. Karpov I.V., Kshevetskii S.P. // J. Atmos. Sol.-Terr. Phys. 2017. V. 164. P. 89; https://doi.org/10.1016/j.jastp.2017.07.019
  57. Kshevetskii S.P., Kurdyaeva Y.A., Gavrilov N.M. // Russ. J. Phys. Chem. B 2023. V. 17. P. 1228; https://doi.org/10.1134/S1990793123050238

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Variations in atmospheric pressure obtained by the network of microbarographs (IFA, MSU, Zvenigorod, Mosrentgen stations) of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences (IFA MSU, Zvenigorod, Mosrentgen stations) during the passage of a meteorological squall in the Moscow region on May 29, 2017.

Baixar (204KB)
3. Fig. 2. Frequency characteristics of wave temperature oscillations at heights of 100, 200 and 300 km at different points (horizontal coordinate – x; vertical – z) relative to the location of the disturbance source. The center of the source is determined at the lower boundary in the region of the point x = 0 km.

Baixar (401KB)
4. Fig. 3. The vertical structure of temperature disturbances obtained in numerical calculations in order to identify the characteristics of waves in the thermosphere. The source center is determined at the lower boundary in the region of the point x = 0 km.

Baixar (238KB)
5. Fig. 4. Values ​​of heat influx (ew) created by the propagation of atmospheric waves into the upper atmosphere.

Baixar (101KB)
6. Fig. 5. Variations in geomagnetic and solar activity indices from May 26 to May 30, 2017. F₁₀₇ – in s.f.u., 1 s.f.u. = 10⁻²² W/(m² Hz).

Baixar (230KB)
7. Fig. 6. Dynamics of the F₂-layer critical frequency (time–latitude) on May 26–29, 2017.

Baixar (120KB)
8. Fig. 7. a – Difference in the values ​​of the zonally averaged concentration of atomic oxygen between calculation options M² and M1 at an altitude of 200 km on May 29, 2017. b – Difference in the zonally averaged values ​​of f₀F₂ between calculation options M² and M1 on May 29, 2017.

Baixar (198KB)
9. Fig. 8. Latitude-temporal changes in the critical frequency of the F₂ layer on May 29, 2017 at longitudes of 25° E (a), 35° E (b), 45° E (c).

Baixar (283KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024