The ionospheric electric field perturbation with an increase in radon emanation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Due to the increase in radon emanation, the conductivity in the surface layer of air increases, which causes variations in the electric fields in the low atmosphere and according to some hypotheses in the ionosphere. There are known proposals on the possibility of using such ionospheric disturbances as precursors of earthquakes. We simulate the ionospheric electric fields in the framework of a quasi-stationary model of the conductor consisting of the atmosphere including the ionosphere. The consequences of the paradoxical point of view about a decrease in the conductivity of surface air with an increase in radon content are also considered. Even with extreme radon emanation, disturbances of the ionospheric electric field are obtained three to four orders of magnitude smaller than the supposed precursors of earthquakes.

全文:

受限制的访问

作者简介

V. Denisenko

Institute of Computational Modelling SB RAS

编辑信件的主要联系方式.
Email: denisen@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk

E. Rozanov

Sankt-Petersburg State University

Email: denisen@icm.krasn.ru
俄罗斯联邦, St Petersburg

K. Belyuchenko

West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: denisen@icm.krasn.ru
俄罗斯联邦, Kaliningrad

F. Bessarab

West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: denisen@icm.krasn.ru
俄罗斯联邦, Kaliningrad

K. Golubenko

Oulu University

Email: denisen@icm.krasn.ru
芬兰, Oulu

M. Klimenko

West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS

Email: denisen@icm.krasn.ru
俄罗斯联邦, Kaliningrad

参考

  1. Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 508. https://doi.org/10.1134/S1990793122030058
  2. Pulinets S., Ouzounov D., Karelin A., Boyarchuk K. Earthquake Precursors in the Atmosphere and Ionosphere. New Concepts. Dordrecht: Springer Nature, 2022.
  3. Xu T., Hu Y., Wu J. et al. // Adv. Space Res. 2011. V. 47. № 6. P. 1001; https://doi.org/10.1016/j.asr.2010.11.006
  4. Klimenko M.V., Klimenko V.V., Zakharenkova I.E. et al. // Adv. Space Res. 2011. V. 48. № 3. P. 488; https://doi.org/10.1016/j.asr.2011.03.040
  5. Harrison R.G., Aplin K.L., Rycroft M.J. // J. Atmos. Sol.-Terr. Phys. 2010. V. 72. № 5–6. P. 376; https://doi.org/10.1016/j.jastp.2009.12.004
  6. Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. № 1. P. 1; https://doi.org/10.1007/s10712-018-9499-6
  7. Denisenko V.V. Proc. VI Russ. Conf. Glob. Electr. Circ., Yaroslavl, 2023. P. 48.
  8. Molchanov O., Hayakawa M. Seismo-electromagnetics and related phenomena: history and latest results. Tokyo: TERRAPUB, 2008.
  9. Chengxun Y., Zhijian L. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 5. P. 955. https://doi.org/10.1134/S1990793122050189
  10. Larin I.K. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 492. https://doi.org/10.1134/S1990793122030083
  11. Brunelli B.E., Namgaladze A.A. Physics of the ionosphere. M.: Nauka, 1988.
  12. Nesterov S., Denisenko V., Boudjada M.Y., Lammer H. // Proc. 5th Int. Conf. Trigger Effects in Geosystems. Springer, Cham: 2019. P. 559; https://doi.org/10.1007/978-3-030-31970-0_59
  13. The Earth’s Electrical Environment. Washington, DC: The National Academies Press, 1986; https://doi.org/10.17226/898
  14. Golubenko K., Rozanov E., Mironova I., Karagodin A., Usoskin I. // Geophys. Res. Lett. 2020. V. 47. № 12. e2020GL088619; https://doi.org/10.1029/2020GL088619
  15. Klimenko V.V., Denisenko V.V., Klimenko M.V. // Rus. J. Phys. Chem. B 2022. V. 16. № 5. P. 1008. https://doi.org/10.1134/S1990793122050219
  16. Denisenko V.V., Pomozov E.V. // J. Comp. Tech. 2010. V. 15. P. 34. Mareev E.A. // Phys. Usp. 2010. V. 53. P. 504. https://doi.org/10.3367/UFNe.0180.201005h.0527
  17. Denisenko V.V., Rozanov E.V., Belyuchenko K.V. et al. // Proc. VIII Int. Conf. “Atmosphere, Ionosphere, Safety (AIS-2023)”. Kaliningrad, 2023. P. 117.
  18. Schraner M., Rozanov E., Schnadt Poberaj C. et al. // Atmosph. Chem. Phys. 2008. V. 8. № 19. P. 5957; https://doi.org/10.5194/acp-8-5957-2008

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Disturbances of the current density flowing from the atmosphere into the ionosphere, δjz(r), (thin curve) and the radial component of the ionospheric electric field δEr(r) (thick curve) with an increase in conductivity in the radon-occupied ground layer of air.

下载 (50KB)
3. Fig. 2. Solution of the problem of electrical conductivity with conductivity reduced to zero in the surface air layer in a circle with a radius of 100 km. Equipotentials are curves of average thickness with the potential values ​​indicated on them. Current lines with an interval between them of 7 km × 2 pA/m² are thick curves with arrows indicating the direction of the current, and additionally constructed with an interval ten times smaller are thin curves.

下载 (105KB)
4. Fig. 3. Disturbances of the current density flowing from the atmosphere into the ionosphere, δjz(r) (thin curve) and the radial component of the ionospheric electric field δEr(r) (thick curve) with a decrease in conductivity in the surface air layer.

下载 (50KB)
5. Fig. 4. Difference in the solution of the electrical conductivity problem for potential V with conductivity reduced to zero in the surface air layer in a circle with a radius of 10 km from the potential in the region of the unperturbed GEC. Equipotentials are thin curves with the potential values ​​indicated on them, the step is 0.25 of the logarithm of the potential value. Cross-sections of current tubes with an interval equal to π · 10⁻⁵ A are thick curves with arrows indicating the direction of the current.

下载 (172KB)

版权所有 © Russian Academy of Sciences, 2024